

SNS COLLEGE OF

TECHNLOGY

Unit-2 Input/Output Ports and
Interfacing LCD & Seven Segment
Display

Basic I/O Concepts

• Peripherals such as LEDs and keypads are
essential components of microcontroller-
based systems

• Input devices
• Provide digital information to an MPU

• Examples: switch, keyboard, scanner, and digital camera

• Output devices
• Receive digital information from an MPU

• Examples: LED, seven-segment display, LCD, and printer

• Devices are interfaced to an MPU using I/O ports

2

I/O Interfacing

3

Interfacing and Addressing
• I/O ports
• Buffers and latches on the MCU chip

• Assigned binary addresses by decoding the address bus

• Generally bidirectional

• Internal data direction registers

• To read binary data from an input peripheral

• MPU places the address of an input port on the address bus

• Enables the input port by asserting the RD signal

• Reads data using the data bus

• To write binary data to an output peripheral

• MPU places the address of an output port on the address bus

• Places data on data bus

• Asserts the WR signal to enable the output port
4

PIC18F452/4520 I/O Ports

• MCU includes five I/O ports
• PORTA, PORTB, PORTC, PORTD, PORTE

• Ports are multiplexed
• Can be set up to perform various functions

• Each I/O port is associated with several SFRs
• PORT

• Functions as a latch or a buffer

• TRIS

• Data direction register

• Logic 0 sets up the pin as an output

• Logic 1 sets up the pin as an input

• LAT

• Output latch similar to PORT
5

PIC18F452/4520 I/O Ports

PORTA: Example of Multiple Fns

• Digital I/O: RA6-RA0

• Analog Input: AN0-AN4

• V REF+ : A/D Reference Plus V

• V REF- : A/D Reference Minus V

• TOCK1: Timer0 Ext. Clock

• SS: SPI Slave Select Input

• LVDIN: Low V Detect Input

6

PIC18F452/4520 I/O Ports
• PORTB

7

I/O Example

• Write instructions to set up pins RB7-RB4
of PORTB as inputs and pins RB3-RB0
as outputs

Opcode Operands Comments

MOVLW 0xF0 ;Load B’11110000’ into WREG

MOVWF TRISB ;Set PORTB TRIS Reg

8

Interfacing Output Peripherals

• Commonly used output peripherals in embedded systems

• LEDs

• Seven-Segment Displays

• LCDs

• Two ways of connecting LEDs to I/O ports

• Common Cathode
• LED cathodes are grounded

• Logic 1 from the I/O port turns on the LEDs

• Current is supplied by the I/O port called current sourcing

• Common Anode
• LED anodes are connected to the power supply

• Logic 0 from the I/O port turns on the LEDs

• Current is received by the chip called current sinking

9

Interfacing Output Peripherals

10

Common Cathode Common Anode

Seven-Segment Display

• Seven-segment Displays
• Used to display BCD digits

• 0 thru 9

• A group of 7 LEDs
physically mounted in the
shape of the number
eight
• Plus a decimal point

• Each LED is called a segment
• ‘a’ through ‘g’

• Two types
• Common anode

• Common cathode 11

Seven-Segment Display

• Common Anode
• All anodes are connected together to a power supply

• Cathodes are connected to data lines

• Logic 0 turns on a segment

• Example: To display the digit 1
• All segments except b and c should be off

• 11111001 = F9H

12

Common Anode

Seven-Segment Display

• Common Cathode
• All cathodes are connected together to ground

• Anodes are connected to data lines

• Logic 1 turns on a segment

• Example: To display digit 1
• All segments except b and c should be off

• 00000110 = 06H

13

Reading from an I/O Port

• Read input switches on PORTB (RB7-RB4)

• RB0 set HI (1)

• Switches Open = LOW (0)

• Switches Closed = HIGH (1)

• Display on PORTC

14

Opcode Operands Comments

MOVLW 0xF0 ;Load B’11110000’ into WREG

MOVWF TRISB ;Set PORTB TRIS Reg

CLRF TRISC ;Set PORTC as Output

BSF PORTB,0 ;Set RB0 High

MOVF PORTB,W ;Read PORTB

MOVWF PORTC ;Display on PORTC

Internal Pull-Up Resistor

• Turning off the internal
FET provides a pull-up
resistor

• Bit7 (RBPU) in the
INTCON2 register
enables or disables the
pull-up resistor

• Instruction to Enable Pull Up

Resistors:

BCF INTCON2,7

15

16

Interfacing Push-Button Keys

• When a key is pressed (or released), mechanical
metal contact bounces momentarily and can be read
as multiple inputs

• Key debounce
• Eliminating reading of one contact as multiple inputs

• Hardware or Software

Interfacing a Matrix Keypad

• Hardware (PIC18 Simulator)
• 4 x 4 matrix keypad organized in the row and column format
• Four columns are connected to the lower half of PORTB

(RB0- RB3)
• Four rows are connected to upper half of PORTB (RB4-RB7)
• When a key is pressed, it makes a contact with the

corresponding row and column

17

Interfacing a Matrix Keypad

• PIC18 Simulator Keypad Matrix

18

1

4

2

5

3

6

C

D

7

A

8

0

9

B

E

F

Interfacing a Matrix Keypad

• Software
• To recognize and encode the key pressed

• Set all the columns High by sending ones

• Check for any key pressed (non-zero)

• Set one column High at a time
• Check all the rows in that column

• Once a key is identified
• Encode based on its position in the column

19

Interfacing LCD

• Problem statement

• Interface a 2-line x 20 character LCD module with the
built-in HD44780 controller to I/O ports of the PIC18
microcontroller.

• Explain the control signals necessary to read from and
write to the LCD.

• Write a program to display ASCII characters.

20

Interfacing LCD

• Hardware

• 20 x 2-line LCD display

• Two lines with 20 characters per line

• LCD has a display Data RAM

• Stores data in 8-bit character code

• Each register in Data RAM has its own address

• Corresponds to its position on the line

• Line 1 is 00H to 13H

• Line 2 is 40H to 53H

21

Interfacing LCD

22

Interfacing LCD

• Driver HD44780
• 8-bit data bus (RD7-RD0)

• Three control signals
• RS – Register Select (RA3)

• R/W – Read/Write (RA2)

• E – Enable (RA1)

• Three power connections
• Power, ground, and variable resistor to control brightness

23

Interfacing LCD

• Can be interfaced either in 8-bit mode or 4-bit mode
• In 8-bit mode, all eight data lines are connected

• In 4-bit mode, only four data lines are connected
• Two transfers per character (or instruction) are needed

• Driver has two 8-bit internal registers
• Instruction Register (IR) to write instructions to set up

LCD
• Table 9-3

• Data Register (DR) to write data (ASCII characters)

24

Interfacing LCD

• LCD Operation
• When the MPU writes an instruction to IR or data to

DR, the controller:
• Sets DB7 high indicating that the controller is busy

• Sets DB7 low after the completion of the operation

• The MPU should always check whether DB7
is low before sending an instruction or a data
byte

25

Interfacing LCD

• Writing to or Reading from LCD (Table 9-4)
• The MPU:

• Asserts RS low to select IR

• Asserts RS high to select DR

• Reads from LCD by asserting the R/W signal high

• Writes into LCD by asserting the R/W signal low

• Asserts the E signal high and then low (toggles) to latch a data
byte or an instruction

26

Interfacing LCD

• Software
• To write into the LCD

• Send the initial instructions to set up the LCD
• 4-bit or 8-bit mode

• Continue to check DB7 until it goes low

• Write instructions to IR to set up LCD parameters
• Number of display lines and cursor status

• Write data to display a message

27

I/O devices (Peripherals)

• Examples: switches, LED, LCD, printers, keyboard, keypad

• Interface chips

• are needed to resolve the speed problem

• synchronizes data transfer between CPU and I/O device

• Connection of Interface and CPU

• Data pins are connected to CPU data bus

• I/O port pins are connected to I/O device

• CPU may be connected to multiple interface

• IO ports are simplest interface

29

I/O Interfacing

• Dedicated instructions for IO operations (Isolated I/O)

• same instruction for memory and IO (memory-mapped I/O)

• MCS-51 (8051) is memory mapped

30

Synchronization of CPU

and interface chip

• To make sure that there are valid data in the interface

• two ways

• Polling method: Read status bit - Simple method

• Interrupt driven method: interface interrupts the CPU when it

has new data - CPU executes the ISR

31

Synchronization of CPU

and interface chip

• Output synchronization: two ways of doing this

1. Polling method

• interface chip uses a status bit to indicate that the data register is
empty

• CPU keeps checking status bit until it is set, and then writes
data into interface chip

2. Interrupt driven method: interface chip interrupts the
CPU when it data register is empty. CPU executes
the ISR

32

8051 - Switch On I/O Ports

• Case-1:

• Gives a logic 0 on switch close

• Current is 0.5ma on switch close

• Case-2:

• Gives a logic 1 on switch close

• High current on switch close

• Case-3:

• Can damage port if 0 is output

33

Simple input devices

• DIP switches usually have 8 switches

• Use the case-1 from previous page

• Sequence of instructions to read is:

MOV P1,#FFH

MOV A,P1,

34

Bouncing contacts
• Contact:

• Push-button switches

• Toggle switches

• Electromechanical relays

• Make and break Contact normally open switch

• The effect is called "contact bounce" or, in a switch,
"switch bounce”.

• If used as edge-triggered input (as INT0), several

interrupt is accorded

35

Hardware Solution

• An RC time constant to suppress the bounce

• The time constant has to be larger than the switch bounce

Vcc

OUT

Hardware Solution

37

Software Solution

• Read the new state of switch N time

• Wait-and-see technique

• When the input drops

• an “appropriate” delay is executed (10 ms)

• then the value of the line is checked again to make sure the
line has stopped bouncing

38

Interfacing a Keypad
16 keys arranged as a 4X4 matrix

• Place a 0 on R0 port

• Read C port

• If there is a 0 bit

then the button
at the column/row
intersection has
been pressed.

• Otherwise, try next row

• Repeat constantly

39

0

4

F C

1

D

2

6

A

E

8 9 B

7

3

R1

R2

R3

R4

C1

C2

C3

C4

5

Interfacing a 7-segment display

• A resistor will be needed to control the current
• This leaves two possibilities:

• Case 2 would be more appropriate
• Case 1 will produce different brightness depending on the

number of LEDs turned on.
40

Use of current buffer
❑ Interfacing to a DIP switch and 7-segment display

❑ Output a ‘1’ to ON a segment

❑ We can use 74244 to common cathode 7_seg

41

LCD Interfacing

• Liquid Crystal Displays (LCDs)

• cheap and easy way to display text

• Various configurations (1 line by 20 X char up to 8 lines X 80)

• Integrated controller

• The display has two register

• command register

• data register

• By RS you can select register

• Data lines (DB7-DB0) used to transfer data and commands
 42

Alphanumeric LCD Interfacing

Microcontrolle

• Pinout
• 8 data pins D7:D0
• RS: Data or Command

Register Select

• R/W: Read or Write

• E: Enable (Latch data)

• RS – Register Select
• RS = 0 → Command Register
• RS = 1 → Data Register

• R/W = 0 → Write , R/W = 1 → Read

• E – Enable
• Used to latch the data present on the data pins.

• D0 – D7
• Bi-directional data/command pins.

• Alphanumeric characters are sent in ASCII format. 43

r

E

R/W

RS

communications

bus

DB7–DB0

8
LCD

controller

LCD Module

LCD Commands

• The LCD’s internal controller can accept several commands

and modify the display accordingly. Such as:

• Clear screen

• Return home

• Decrement/Increment cursor

• After writing to the LCD, it takes some time for it to

complete its internal operations. During this time, it will
not accept any new commands or data.

• We need to insert time delay between any two commands or data
sent to LCD

44

Pin Description

45

Command

Codes

46

LCD Addressing

47

LCD Timing

49

RW

E

RS

D7-D0

P3.4

P3.5

P3.3

P1.7-P1.0

Interfacing LCD with 8051

8051

LM015

50

mov A, command

call cmd

delay

mov A, another_cmd

call cmd

delay
mov A, #’A’

call data

delay

mov A, #’B’

call data

delay

….

Command and Data Write Routines

Interfacing LCD

with 8051

data:mov P1, A ;A is ascii data

setb P3.3 ;RS=1 data

clr P3.4 ;RW=0 for write

setb P3.5 ;H->L pulse on E

clr P3.5

ret

cmd:mov P1,A ;A has the cmd word

clr P3.3 ;RS=0 for cmd

clr P3.4 ;RW=0 for write

setb P3.5 ;H->L pulse on E

clr P3.5

ret

51

Example

52

8255 Usage: Simple Example
• 8255 memory mapped to 8051 at address C000H base

• A = C000H, B = C001H, C = C002H, CR = C003H

• Control word for all ports as outputs in mode0
• CR : 1000 0000b = 80H

test: mov A, #80H ; control word

53

mov DPTR, #C003H ; address of CR

movx @DPTR, A ; write control word

mov A, #55h ; will try to write 55 and AA

 ; alternatively

repeat:mov DPTR,#C000H ; address of PA

movx @DPTR, A ; write 55H to PA

inc DPTR ; now DPTR points to PB

movx @DPTR, A ; write 55H to PB

inc DPTR ; now DPTR points to PC

movx @DPTR, A ; write 55H to PC

cpl A ; toggle A (55→AA, AA→55)

acall MY_DELAY ; small delay subroutine

sjmp repeat ; for (1)

Interfacing Keyboard and Display Devices

• Topics Covered:

• Interface switches and keyboard to the 8051

• Interface LED displays to the 8051

• Overcome Keybounce and multiple key
press problems

• Design a microcontroller based
system with keyboard and display
devices

• Interface and program the LCD controller

54

DPL DPH

PC

Some 8051 16-bit Register

DPTR

PC

Some 8-bit Registers of

the 8051
A: Accumulator

B: Used specially in MUL/DIV

R0-R7: GPRs

Registers

55

A

B

R0

R1

R2

R3

R4

R5

R6

R7

8051 Programming

using Assembly

The MOV Instruction – Addressing

Modes
MOV dest,source ; dest = source

MOV A,#72H ;A=72H

MOV A, #’r’ ;A=‘r’ OR 72H

MOV R4,#62H ;R4=62H

MOV B,0F9H ;B=the content of F9’th byte of RAM

MOV DPTR,#7634H

MOV DPL,#34H

MOV DPH,#76H

MOV P1,A ;mov A to port 1

Note 1:
MOV A,#72H ≠ MOV A,72H

After instruction “MOV A,72H ” the content of 72’th byte of RAM will replace in Accumulator.

8086 8051

MOV AL,72H MOV A,#72H

MOV AL,’r’ MOV A,#’r’

MOV BX,72H

MOV AL,[BX] MOV A,72H

Note 2:

MOV A,R3 ≡ MOV A,3 57

Arithmetic Instructions

ADD A, Source ;A=A+SOURCE

ADD A,#6 ;A=A+6

ADD A,R6 ;A=A+R6

ADD A,6 ;A=A+[6] or A=A+R6

ADD A,0F3H ;A=A+[0F3H]

58

Set and Clear Instructions

SETB bit ; bit=1

CLR bit ; bit=0

SETB C ; CY=1

SETB P0.0 ;bit 0 from port 0 =1

SETB P3.7 ;bit 7 from port 3 =1

SETB ACC.2 ;bit 2 from ACCUMULATOR =1

SETB

Note:

05 ;set high D5 of RAM loc. 20h

CLR instruction is as same as SETB

i.e:

CLR C ;CY=0

But following instruction is only for CLR:

CLR A ;A=0 59

SUBB A,source ;A=A-source-CY

SETBC ;CY=1

SUBB A,R5 ;A=A-R5-1

ADC A,source ;A=A+source+CY

SETBC

;CY=1

ADC A,R5 ;A=A+R5+1

60

8051 Flag bits and the PSW register
• PSW Register

CY AC F0 RS1 RS0 OV -- P

Carry flag PSW.7 CY

Auxiliary carry flag PSW.6 AC

Available to the user for general purpose PSW.5 --

Register Bank selector bit 1 PSW.4 RS1

Register Bank selector bit 0 PSW.3 RS0

Overflow flag PSW.2 OV

User define bit PSW.1 --

Parity flag Set/Reset odd/even parity PSW.0 P

RS1 RS0 Register Bank Address

0 0 0 00H-07H

0 1 1 08H-0FH

1 0 2 10H-17H

61
1 1 3 18H-1FH

Instructions that Affect Flag Bits:

Note: X can be 0 or 1 62

Example:

MOV A,#9CH

ADD A,#64H

9C 10011100

+64 +01100100

---- --------------

100 00000000

CY=1 AC=1 P=0

63

Example:

MOV A,#88H

ADD A,#93H

88

+93

11B

CY=1 AC=0

10001000

+10010011

00011011

P=0

Example:
MOV

 A,#38

H

ADD

 A,#2F

H

38

+2F

67

CY=0

 AC=

1

00111000

+0010111

1

-

0110011

1

P=1

Addressing Modes

• Immediate

• Register

• Direct

• Register Indirect

• Indexed

64

Immediate Addressing Mode

MOV A,#65H

MOV A,#’A’

MOV R6,#65H

MOV DPTR,#2343H

MOV P1,#65H

Example :

Num EQU 30

…

MOV R0,Num

MOV DPTR,#data1

…

ORG 100H

data1: db “Example”

65

66

Example

• Write the decimal value 4 on the SSD in the following
figure. Switch the decimal point off.

Direct Addressing Mode

Although the entire of 128 bytes of RAM can be accessed using
direct addressing mode, it is most often used to access RAM loc. 30 –
7FH.

MOV

MOV

MOV

R0, 40H

56H, A

A, 4

; ≡ MOV A, R4

MOV 6, 2 ; copy R2 to R6
 ; MOV R6,R2 is invalid !

SFR register and their address

67

MOV 0E0H, #66H ; ≡ MOV A,#66H

MOV 0F0H, R2 ; ≡ MOV B, R2

MOV 80H,A ; ≡ MOV P1,A

Register Indirect Addressing Mode
• In this mode, register is used as a pointer to the data.

MOV A,@Ri ; move content of RAM loc.Where address is held by Ri into A
 (i=0 or 1)

MOV @R1,B

In other word, the content of register R0 or R1 is sources or target in MOV, ADD and SUBB
insructions.

Example:
Write a program to copy a block of 10 bytes from RAM location sterting at 37h to RAM
location starting at 59h.

Solution:

MOV R0,37h ; source pointer

MOV R1,59h ; dest pointer

MOV R2,10 ; counter

L1: MOV A,@R0

MOV @R1,A

INC R0

INC R1

DJNZ R2,L1



jump 68

Hardware Structure of I/O Pin

• Each pin of I/O ports

• Internal CPU bus：communicate with CPU

• A D latch store the value of this pin

• D latch is controlled by “Write to latch”

• Write to latch＝1：write data into the D latch

• 2 Tri-state buffer：

• TB1: controlled by “Read pin”

• Read pin＝1：really read the data present at the pin

• TB2: controlled by “Read latch”

• Read latch＝1：read value from internal latch

• A transistor M1 gate

• Gate=0: open

• Gate=1: close
69

Tri-state Buffer

Outpu

t

 Input

Tri-state

control (active

high)

 L L

H

 H

H

Low

Highimpedanc

e (open-circuit7)0



H

Load(L

Writing “1” to Output Pin P1.X

Read latch

1. write a 1 to the pin

Vc
TB2 c

2. output pin is

Vcc

Internal

CPU bus

Write to

latch

D Q
1

P1.X
Clk Q 0

1) P1.X
pin

M
output 1

1

Read pin
TB1

 71

8051 IC

Writing “0” to Output Pin P1.X

Read latch

1. write a 0 to the pin

TB2
Vc

c
Load(L

2. output pin is

ground

Internal

CPU bus

Write to

latch

D Q
0

P1.X
Clk Q 1

1) P1.X
pin

M
output 0

1

Read pin
TB1

 72

8051 IC

Port 1 as Output（Write to a Port）

• Send data to Port 1：

MOV A,#55H

BACK: MOV P1,A

ACALL DELAY

CPL A

SJMP BACK

• Let P1 toggle.

• You can write to P1 directly.
73

Reading Input v.s. Port Latch

• When reading ports, there are two possibilities：

• Read the status of the input pin. （from external pin value）

• MOV A, PX

• JNB P2.1, TARGET ; jump if P2.1 is not set

• JB P2.1, TARGET ; jump if P2.1 is set

• Figures C-11, C-12

• Read the internal latch of the output port.

• ANL P1, A ; P1 ← P1 AND A

• ORL P1, A ; P1 ← P1 OR A

• INC P1 ; increase P1

• Figure C-17

• Table C-6 Read-Modify-Write Instruction (or Table 8-5)

• See Section 8.3
74

Reading “High” at Input Pin

Read latch

1. write a 1 to the pin MOV

P1,#0FFH

Internal CPU bus

Write to latch

TB2

1

0

Vcc

Load(L1)

1

M1

2. MOV A,P1

external pin=High

P1.X pin

Read pin

3. Read pin=1 Read latch=0

Write to latch=1

TB1

75

8051 IC

D Q

P1.X

Clk Q

Reading “Low” at Input Pin

Read latch

1. write a 1 to the pin

MOV P1,#0FFH

Internal CPU bus

Write to latch

TB2

1

D Q

P1.X

0
Clk Q

Vcc

Load(L1)

0

M1

2. MOV A,P1

external pin=Low

P1.X pin

Read pin

3. Read pin=1 Read latch=0

Write to latch=1

TB1

76

8051 IC

Port 1 as Input（Read from Port）

• In order to make P1 an input, the port must be programmed by

writing 1 to all the bit.

MOV A,#0FFH ;A=11111111B

MOV P1,A ;make P1 an input port

BACK: MOV A,P1 ;get data from P0

MOV P2,A ;send data to P2

SJMP BACK

• To be an input port, P0, P1, P2 and P3 have similar methods.

77

Instructions For Reading an Input Port

• Following are instructions for reading external pins of ports:

Mnemonics Examples Description

MOV A,PX MOV A,P2
Bring into A the data at P2

pins

JNB PX.Y,.. JNB P2.1,TARGET Jump if pin P2.1 is low

JB PX.Y,.. JB P1.3,TARGET Jump if pin P1.3 is high

MOV C,PX.Y

MOV C,P2.4
Copy status of pin P2.4 to

CY

78

Read-modify-write Feature

• Read-modify-write Instructions

• Table C-6

• This features combines 3 actions in a single instruction：

1. CPU reads the latch of the port

2. CPU perform the operation

3. Modifying the latch

4. Writing to the pin

• Note that 8 pins of P1 work independently.

79

Port 1 as Input（Read from latch）

• Exclusive-or the Port 1：

MOV P1,#55H ;P1=01010101

AGAIN: XOR P1,#0FFH ;complement

ACALL DELAY

SJMP AGAIN

• Note that the XOR of 55H and FFH gives AAH.

• XOR of AAH and FFH gives 55H.

• The instruction read the data in the latch (not from the pin).

• The instruction result will put into the latch and the pin.

80

Port 0 with Pull-Up Resistors

Vcc
10 K

0

81

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

P
o
rt

8051 Programming

Using C

Programming microcontrollers

using high-level languages
• Most programs can be written exclusively using high-

level code like ANSI C

• Extensions
• To achieve low-level (Assembly) efficiency, extensions to

high- level languages are required

• Restrictions
• Depending on the compiler, some restrictions to the high-

level language may apply

83

Keil C keywords
• data/idata:

Description: The variable will be stored in internal data memory of controller.

example:
unsigned char data x;
//or
unsigned char idata y;

• bdata:
Description: The variable will be stored in bit addressable memory of controller.

example:
• unsigned char bdata x;

//each bit of the variable x can be accessed as follows
x ^ 1 = 1; //1st bit of variable x is set
x ^ 0 = 0; //0th bit of variable x is cleared

• xdata:
Description: The variable will be stored in external RAM memory of controller.

example:
unsigned char xdata x;

84

Keil C keywords
• sfr:

Description: sfr is used to define an 8-bit special function register from sfr memory.

example:
sfr Port1 = 0x90;
// Special function register with name Port1 defined at addrress 0x90

• sfr16:
Description: This keyword is used to define a two sequential 8-bit registers in SFR memory.

example:
sfr16 DPTR = 0x82;
// 16-bit special function register starting at 0x82
// DPL at 0x82, DPH at 0x83

• using:
Description: This keyword is used to define register bank for a function. User can specify register bank 0
to 3.

example:
void function () using 2{
// code
}
// Funtion named "function" uses register bank 2 while executing its code

• Interrupt:
Description: defines interrupt service routine

void External_Int0() interrupt 0{ 85
//code
}

Data Converters

• Analog to Digital Converters (ADC)

– Convert an analog quantity
(voltage, current) into a digital
code

• Digital to Analog Converters (DAC)
– Convert a digital code into an

analog quantity (voltage, current)

Dr. Konstantinos Tatas and Dr.

Costas Kyriacou

87

Image

enhancement

and coding

A/D

Pre-

amplifier

Amplifier

Filters

Modulator

Digital

Video (Analog - Digital)

Analog

Temperature Recording by a Digital System
Temperature

(ºC)

Temperature

(ºC)

 Time

Sampling &

quantization

 Time

88

Need for Data Converters
Digital processing and storage of physical quantities (sound, temperature, pressure

etc) exploits the advantages of digital electronics

• Better and cheaper technology compared to the analog

• More reliable in terms of storage, transfer and processing

• Not affected by noise

• Processing using programs (software)

• Easy to change or upgrade the system

• (e.g. Media Player 7 → Media Player 8 ή Real Player)

• Integration of different functions

• (π.χ. Mobile = phone + watch + camera + games + email +
89

90

QUANTIZATION ERROR
• The difference between the true and quantized value of the analog signal

• Inevitable occurrence due to the finite resolution of the ADC
• The magnitude of the quantization error at each sampling

instant is between zero and half of one LSB.
• Quantization error is modeled as noise (quantization noise)

u(V)

16

14

12

10

8

6

4

2

Analog signal value at

sampling time: 4.9 V

Quantized Analog signal

value: 5.0 V

Quantization error:

5.0 - 4.9 = 0.1 V

1 2 3 4 5 6 7 8 9 t (S)

Interfacing Switches

91

VCC

R

ON

DIP

SWITCH

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

8051

What is a Keyboard ?

• Collection of keys interfaced to the microcontroller

• Arranged in the form of two dimensional matrix

• Matrix arrangement used for minimizing the number of port
lines

• Junction of each row and column forms the key

92

+5V

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

8051

Interfacing a Keyboard

➢ One key per port line
93

P2.3 P2.2 P2.1 P2.0

Interfacing a Keyboard

PULL-UP

REGISTERS

K

8051

➢ Keys are organized in two-dimensional matrix to 94

minimize the number of ports required for interfacing

P1.0

 X1

P1.1

X2

P1.2

 X3

P1.3

X4

3

2

1

0

7

6

5

4
 10

B

A

9

8

F

E

D

C

 Y4 Y3 Y2 Y1

P2.3 P2.2 P2.1 P2.0

Interfacing a Keyboard

P1.0

P1.1

10K 10K 10K 10K

10K

X1

10K

X2

10K

X3
10K

Pull-up

registers

X4

8051

Y4 Y3 Y2 Y1

95

➢ Use of decoder further reduces the number of port

lines required

D

E

C

O

D

E

R F

B

7

3

C D E

8 9 A

4 5 6

0 1 2

Key Issues

• Key bounce can be overcome using
Software/Hardware approach

• Keyboard Scanning

• Multiple Key Closure

▪ 2-key lockout

▪ 2-key rollover
• Minimize Hardware Requirement:

▪ Use of Keyboard Encoder

• Minimize Software Overhead

96

Interfacing a single LED

➢ Driver circuit to
interface a single LED

97

Vcc

R
IF

LED

SWITCH

Vt VF

R2
Vcc

R1 Port

line
R1

R1

Port

line
Port

line

Common anode

Seven Segment LEDs

a b c d e f g dp a b c d e f g dp

➢ Two types: Common
cathode and common
anode type

➢ Seven-segment LEDs
can be conveniently used
to display HEX characters

Common Cathode

f
a

e
g

d

b

c

d

p

a

e b

e c

d

b

c

a

b

g

e

d

a

b

g

c

d

f b

g

c

a

f

g

c

d

a

f

g

e c

d

a

b

c

a

f b

g

e c

d

a

f b

g

c

a

f b

g

e c

f

g

e a

d

a

f

e

d

b

g

e c

d

a

f

g
e

d

a

f

g

e

98

Multidigit Driver

• Features of Multidigit Driver
▪ 8-segment driver output lines

▪ 8-digit driver lines

▪ 20 mA peak current

▪ LEDs can withstand high peak current

• Sequencing operation:
▪ Select data using digit address lines DA0-2

▪ Write data using ID0-3 and ID7 lines

• Three modes of operation:
▪ HIGH: HEX, LOW: OFF, OPEN: CODED-HELP

99

Liquid Crystal Displays

• Key features:
▪ Low Power Consumption

▪ Voltage Controlled

▪ Easy to read in bright light

▪ Declining Cost

▪ Ability to display Characters/Graphics

▪ Intelligent controller and LCD display panels readily available

100

Liquid Crystal Displays

P1.0

P1.1

P1.2

P1.3

P1.4
P1.5
P1.6
P1.7

OSC

VCC

DISPLAY MODULE

GND

BACK

PLANE

101

DIGIT 4

DIGIT 3

DIGIT 2

DIGIT 1

a

⁝
g

a

⁝
g

a

⁝
g

DIGIT

SELECT

D0

D1

D2

D3

a

⁝
g

DATA IN

B0
B1
B2
B3

LCD Display Module

• LCD modules:
▪ An LCD panel and small circuit board containing the controller chip

▪ 14 – pin connections to microcontroller

▪ HITACHI’S HD44780 controller can control up to 80 characters

▪ Easy to program

▪ 2 rows, 20/40 character in each row

▪ Each character can be 5X8 or 5X11 matrix

102

LCD Display Module

➢ CG ROM stores
segment pattern of 192
char.

➢ CG RAM stores
segment patterns of 16
user-designed char.

➢ An 8-bit instruction
reg.

➢ An 8-bit data reg.

➢ DD RAM stores up to
80 8-bit char. Codes

➢ 11 instructions clear

display, return home

103

+5V GND

8

0

5

1

P1.0

P1.1

P1.2

P1.3
P1.4
P1.5
P1.6
P1.7

P3.0

P3.1

P3.2

2
D0

D1
D2
D3
D4
D5
D6
D7
RS

R / W
E

3 1

LCD Modules

104

105

