
INTRODUCTION TO
EMBEDDED SYSTEMS

1

INTRODUCTION TO EMBEDDED SYSTEMS

• Introduction to Embedded Systems

• The Build process for embedded systems

• Structural units in Embedded processor

• Selection of processor

• Selection of Memory devices

2

INTRODUCTION TO EMBEDDED SYSTEMS

• DMA

• Memory management methods

• Timer and Counting devices

• Watchdog Timer

• Real Time Clock

• In circuit emulator

• Target Hardware Debugging.
3

What a Embedded System Is???

4

Examples Embedded System

5

Components in Embedded System

6

System

A system is a way of working, organizing or

doing one or many tasks, which are performed in

a system according to a fixed plan, program or

set or rules

7

General Computing System Components

• Microprocessor

• Large memory

• Input Units

• Out put Units

• Networking Units

• An Operating System

8

Embedded System

An embedded system is a system that has
embedded software in a computer hardware.
The system is dedicated for either an
application(s) or specific part of an application or
product or a component of a large system

Eg.

Washing machine

Cooking machine

Automative chocolate vending machines

Multitasking toys
9

Classification of Embedded System

i. Small Scale Embedded Systems

ii. Medium Scale Embedded Systems

iii. Sophisticated Embedded Systems

10

Embedded System Components

• It embeds Hardware similar to a computer

• Software usually embeds in the ROM, flash

memory or media card

• It embeds a Real Time Operation System

(RTOS)

11

Components of Embedded System
Hardware

12

Building Blocks of Embedded System
Hardware

• The Hardware consists of following building blocks
and devices:

• Power source

• Clock Oscillator and Clocking Units

• System Timer

• Real Time Cock

• Reset Circuit

• Power Up Reset

• Watchdog Timer Reset

• Memory

• I/O ports

• I/O buses

• I/O Interfaces

• DAC

• ADC 13

The Build Process

• The first step is selecting a processor

• The processor is selected from the following
considerations

– Instruction Set

– Maximum bits in an operand in an operation

– Clock frequency in MHz or GHz and the
processing speed in Million Instructions per
seconds

– Processor ability to solve the complex algorithms
used in meeting the deadlines for their processing

14

The Build Process

• The build process for embedding software
consists of the following steps

– Project file consisting of source file and library
files

– Compilation of the project files

– Linking all object files and locating onto a single
re-locatable object file

– Converting the object file in a form called hex-file
to binary image

15

The Build Process

16

Design Process in Embedded System

• Concepts used during Design process

– Abstraction

– Hardware and Software Architectures

– Extra Functional Properties

– System Related family of Designs

– Modular Design

– Mapping

– User Interfaces Design

– Refinements

17

Design Process in Embedded System

• Software Design Process

18

Design Process in Embedded System
• Design Metrics

– Power Dissipation

– Performance

– Process Deadlines

– User Interfaces

– Size

– Engineering Cost

– Manufacturing Cost

– Flexibility

– Prototype Development Time

– Time to Market

– System and User Safety

– Maintenance
19

Abstraction of Steps in Design Process

20

Structural Units in Embedded Processor

• Internal Buses:
– It internally connects all the structural units inside the processor.
– Its width can be 8,16,32 or 64 bits

• Address Bus
– It is the external bus that carries the address from the MAR to the memory as

well as the IO devices and the other units of the system

• Data Bus
– It is an external bus that carries the data from or to the address

• Control Bus
– It is an external bus to carry control signal between the processor and memory

devices

• Bus Interface Unit
– It is the interface unit between the processor’s internal units with the external

buses

• MAR:
– Memory Address Register
– It holds the address of the byte or word to be fetched from external memories

• MDR:
– It holds the byte or word fetched from/to external memory or I/O address

21

Structural Units in Embedded Processor

• Program Counter
– PC holds the memory address of the next instruction that would

be executed.

• Stack Pointer
– It is a pointer for an address which corresponds to stack top in

the memory

• Instruction Register
– It takes sequentially the instruction codes to the execution unit

of the processor

• Instruction Decoder
– It decodes the instruction opcode received at the IR passes it to

the processor CU

• Instruction Queue
– It is the queue of instruction so that the IR does not have to wait

for the next instruction after one has been carried out

22

Structural Units in Embedded Processor

• Arithmetic and Logical Unit

– It is a unit to execute arithmetic and logical instruction
according to the current instruction present in the IR

• Floating Point Processing Unit (FPPU)

– A unit separate from ALU for floating point processing
which is essential in processing mathematical
functions fast in a microprocessor or DSP

• Floating Point Register Set(FPRS):

– A register set dedicated for storing floating point
number in a standard format and used by FPPU for its
data and stack

23

Structural Units in Embedded Processor

• Control Unit

– It controls all the bus activities and unit functions
needed for processing

• Memory management Unit (MMU)

– It manages the memory such that instruction and
data are readily available for processing

• Application Register Set

– It is set of on-chip registers used during processing
the instruction of the application program of the
user

24

Structural Units in Embedded Processor

• Instruction Cache
– It sequentially store s, like an Instruction queue, the

instructions in FIFO.

• Data Cache
– It stores the pre-fetched data from the external

memory
– The data cache generally holds both the key and the

value together at the location

• Pre-Fetch Control Unit
– It is the unit that controls the prefetching of data into

the I-Cache and D-Cache in advance from the memory
units

– The instruction and data are delivered when needed
to the processor’s execution unit

25

Structural Units in Embedded Processor

• Register Window
– A register window consists of a subset of registers

with each subset storing static variables and status
words of a task or program thread.

• Advanced processing Unit
– These are units used for multi stage pipeline

processing, multiline superscalar processing to obtain
processing speed higher that one instruction per
clock cycle

• Atomic Operations Unit (AOU):
– It lets a user instruction when broken into number of

processor instruction called atomic operation, finish
before an interrupt of a process occurs.

26

Structural Units in Embedded Processor

27

Embedded System Characteristics

• System functions in real time

• Program is preloaded in the ROM(s) or flash
memory

• Dedicated set of functions

• Complex dedicated purpose preprogrammed
– algorithms

– Hardware

– Graphics and Other user interfaces

• Multirate operations with different
predetermined time constraints to finish the
different operations 28

Constraints of Embedded Systems

• Available System Memory

• Available Processor Speed

• Meeting Deadlines

• Performance

• Power

• Size

• Design and Manufacturing Cost
29

Selection of Processor

• Different systems require different processor
features

• The processor is selected from the following
considerations
– Instruction Set

– Maximum bits in an operand in an operation

– Processing Speed

– Ability to solve the complex algorithms

– A processor gives high computing performance when
it has
• Pipeline and Superscalar architecture

• Pre-fetch cache unit, caches, register files and MMU

• RISC core architecture 30

Selection of Processor

– A processor with register windows provides fast

context switching in a multitasking system

– Processor has auto shut down features for its

units

– A processor with burst mode accesses external

memories fast

31

Selection of Memory Devices

• Software designer coding is over and the ROM
image file is ready, a hardware designer of a
system is faced with the a questions, of

– what type of memory ?

– what to use?

– how much size of each, should be to used???

32

Selection of Memory Devices

• Some of the selection process is,
– Internal ROM

– Internal EPROM

– Internal EEPROM

– Internal RAM

– ROM Device

– EPROM Device

– EEPROM Device

– Flash Device

– RAM device

– Parameterized Distributed RAM

– Parameterized Block RAM
33

Selection of Memory Devices

• Masked ROM or EPROM stores the embedded
software

• EEPROM is used for testing and design stages
and also is used to store the results during the
system program run time

• Flash stores the results byte by byte during a
system run after a full sector erase

• RAM is mostly used in SRAM form in a system
• Sophisticated system use RAM in the form of

DRAM, SDRAM or RDRAM
• Parameterized distributed RAM is used when the

I/O devices and subunits require a memory buffer
and a fast write by another system

34

DMA

• I/O devices need to transfer the data of other
systems to the memory addresses in the
system

• A system may also need to transfer data to the
IO devices

• A Direct Memory Access is required when a
block of data is to be transferred between two
systems without the CPU intervening, except
at the start and at the end

35

DMA

36

DMA

• DMA supports 3 modes of operations

– Single transfer at a time and then release of the

hold on the system bus

– Burst transfer at a time and then release of the

hold on the system bus. A burst may be a few Kilo

Bytes

– Bulk transfer and then release of the hold on the

system bus after the transfer is completed
37

DMAC

• DMA transfer is facilitated by the DMAC (DMA

Controller)

• Data transfer occurs efficiently between I/O

devices and system memory with the least

processor intervention using DMAC

• The system address and data buses become

unavailable to the processor and available to the

IO device that connects DMAC
38

DMA

A typical DMA controller includes three
registers

Starting Address Register

Length Register

Status Register

39

DMA

40

DMAC

41

Memory Management Methods

42

Memory Management Methods

How MMU works

Keep track of what part of memory are in use

Allocate memory to processes when needed

De-allocate when processes are done

Swapping or Paging between main memory and

disk

43

Memory Management Methods

44

Memory Management Methods

In general, memory management
responsibilities include:

• Managing the mapping between logical memory
and task memory references

• Determining which processes to load in to the
available memory space

• Allocating and de-allocating of memory for
processes that make up the system

• Tracking the memory usage of system
components

• Ensuring process memory protection
45

User Memory Space

Because multiple processes are sharing the
same physical memory when being loaded
into RAM for processing, there also must be
some protection mechanism so processes
cannot unintentionally affect each other when
being swapped in and out of a single physical
memory space

These issues are typically resolved by the OS
through “memory swapping” where partitions
of memory are swapped at run time.

46

User Memory Space

Memory Swapping

47

User Memory Space

48

Segmentation
A process encapsulates all the information that is

involved in executing a program, including source
code, stack and data.

All of the different types of information within a
process are divided into logical memory units of
variable sizes called SEGMENTS

Most OS typically allow processes to have all or
some combination of five types of information
within segments such as

Code Segment
Data Segment
Block started by Symbol
Stack Segment
Heap Segment

49

Typical Memory Allocation Schemes include:

First Fit
It scans from the beginning for the first ‘Hole’ that is

large enough

Next Fit
It scans from where the last search ended for the next

‘Hole’ that is large enough

Best Fit
It scans the entire list for the hole that best fits the

new data

Worst Fit
It places data in the largest available “hole”

Quick Fit
Here, list is kept with memory sizes. Allocation is done

from this information
50

Memory Management Functions

• Allocation and De-allocation

• Dynamic Blocks Allocation

• Memory Protection to the OS functions

• Memory Protection among the Tasks

• Multiprocessor Memory Allocation

51

Timer and Counting Devices

52

Timer and Counting Devices

• Timer Device

– A timer device is a device which counts the input
at the regular interval of the clock pulses

– The count are stored and incremented on each
pulse

– The timer gives output bits for the present counts

– The counts multiplied by the interval give the
time

– It has a input pin for resetting it for all count
bits = 0s

– It has an output pin for output when all counts
bits =0s after reaching the maximum value 53

Timer States

54

Timer and Counting Devices

• Counting Devices
– A counting device is a device which counts the

input due to the events at irregular or regular
intervals

– The counts give the number of input events or
pulses since it was last read

– Has a register to enable read of present counts

– Functions as timer when counting regular interval
clock pulses

– When a timer or counter becomes 0x00 or 0x0000
after 0xFF or 0xFFFF (maximum value), it can
generate an ‘interrupt’, or an output ‘Time-Out’
or set a status bit ‘TOV’

55

Hardware Timer

56

Hardware Timer

• Control Bits are of 9 types,
I. Timer Enable (To activate a timer)

II. Timer start (to start counting at each clock input)

III. Timer stop (to stop counting)

IV. Pre-scaling Bits (to divide the clock out frequency signal from
the processor)

V. Up count Enable (To enable counting up by incrementing the
count value on each clock input)

VI. Down count enable (to decrement on a clock input)

VII. Load enable (To enable loading of a value at a register into the
timer)

VIII.Timer Interrupt Enable (To enable interrupt when the timer
count value reaches 0)

IX. Time out enable (To enable a signal when the timer overflows)57

Free running Counter

• A counting device may be a free running (blind
counting) device giving overflow interrupts at fixed
intervals

• A pre-scalar for the clock input pulses to fix the
intervals

58

Control bits, Status flags and variables of a
software timer

59

Uses of a timer device

• Initiating an event after a comparison(s) with
between the pre-set time with counted value.

• Watchdog timer - It resets the system after a
defined time

• Input pulse counting when using a timer,
which is ticked by giving non-periodic inputs
instead of the clock inputs.

60

Watchdog Timers

• A watchdog timer is a timing device that is set
for a preset time interval and a set of task
must finish during that intervals, or else the
device will generate the timeout signal for the
failure to finish the given task in the watched
time interval.

61

Real Time Clocks

• A clock, which is based on the interrupts at
pre-set intervals.

• An interrupt service routine executes on each
timeout (overflow) of this clock.

• This timing device once started never resets
or never reloaded with another value.

• Once it is set, it is not modified later.

• Used in a system to save the time and date.

• Used in a system to initiate return of control
to the system (OS) after the set system clock
periods

62

In Circuit Emulator

63

In Circuit Emulator

• Circuit for emulating target system remains
independent of a particular targeted system
and processor

64

In Circuit Emulator

• A circuit for emulating target system remains

independent of a particular targeted system

and processor

• Emulator or ICE provides great flexibility and

ease for developing various applications on a

single system in place of testing that multiple

targeted systems.

65

An Emulator

66

In Circuit Emulator

67

Emulator

• Emulates MCU inputs from sensors

• Emulates controlled outputs for the peripheral

interfaces/systems

• Emulates target MCU IOs and socket to

connect externally MCU

68

ICE

• Means In-Circuit Emulator

• Interface COM port of a computer

• Emulates target MCU IOs

• ICE socket connects MCU externally

• Uses computer developed object files and hex
files for the MCU

• Uses debugger at the computer developed
files for the MCU application

69

Target Hardware Debugging

70

Host-Target System Development Approach

• During development process, a host system is
used

• Then locating and burning the codes in the
target board.

• Target board hardware and software later
copied to get the final embedded system

• Final system functions exactly as the one
tested and debugged and finalized during the
development process

71

Host System (PC or Laptop or Workstation)

• High performance processor with caches, large
RAM memory

• ROMBIOS (read only memory basic input-output
system)

• Very large memory on disk
• Keyboard
• Display monitor
• Mice
• Network connection
• Program development kit for a high level

language program or IDE
• Host processor compiler and Cross Compiler
• Cross assembler

72

Program Development Tool Kit at host

• Program development tool kit or IDE

• Editor─ used for writing C codes or assembly
mnemonics or C++ or Java or Visual C++ using
the keyboard of the host system (PC) for
entering the program.

• Using GUIs for allowing the entry, addition,
deletion, insert, appending previously written
lines or files, merging record and files at the
specific positions.

73

Program Development Tool Kit at host

• Create source file that stores the edited file.

• File given an appropriate name by the

programmer

• Can use previously created files

• Can also integrate the various source files.

• Can save different versions of the source files.

• Compiler, cross compiler, assembler, cross

assembler 74

Target System

75

Sophisticated Target System

76

Sophisticated Target System

• Target system differs from a final system

• Target system interfaces with the computer as
well as works as a standalone system

• In target system might be repeated downloading
of the codes during the development phase.

• Target system copy made that later on functions
as embedded system

• Designer later on simply copies it into final
system or product.

• Final system may employs ROM in place of flash,
EEPROM or EPROM in embedded system.

77

INTRODUCTION TO EMBEDDED SYSTEMS

• Introduction to Embedded Systems

• The Build process for embedded systems (2)

• Structural units in Embedded processor(2)

• Selection of processor(1)

• Selection of Memory devices (1)

78

Reference

1. Rajkamal, ‘Embedded System-Architecture,

Programming, Design’, Mc Graw Hill, 2013.

2. Peckol, “Embedded system Design”, John Wiley &

Sons, 2010.

3. Lyla B Das,” Embedded Systems-An Integrated

Approach”, Pearson, 2013.

79

