

Impressed Current Cathodic Protection Method

- An impressed current is applied in the opposite direction of the corrosion current to nullify it, and the corroding metal is converted from anode to cathode.
- This can be done by connecting negative terminal of the battery to the metallic structure, to be protected, and positive terminal of the battery is connected to an inert anode.

Inert anodes used for this purpose are graphite, platinised titanium.

The anode is buried in a "back fill" (containing mixture of gypsum, coke, breeze, sodium sulphate). The "back fill" provides good electrical contact to anode

Applications of Impressed Current Protection

Structures like tanks, pipelines, transmission line towers, underground water pipe lines, oil pipe lines, ships, etc., can be protected by this method

Comparison of Sacrificial anode method and impressed current cathodic current method

S.No	Sacrificial anode method	Impressed current method
1	External power supply is not	External power supply is
	required	required
2	The cost of investment is low.	The cost of investment is high.
3	This requires periodical	Replacement is not required as
	replacement of sacrificial	anodes are stable
	anode	
4	Soil and microbiological	Soil and microbiological
	corrosion effects are not	corrosion effects are taken into
	considered	account.
5	This is the most economical	This is well suited for large
	method especially when short	structures and long term
	term protection is required	operations.
6	This is a suitable method when	This is a suitable method when
	the current requirement and the	the current requirement and the
	resistivity of the electrolytes	resistivity of the electrolytes are
	are relatively low.	relatively high.

