

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

ANALYSIS OF VARIANCE (ANOVA):

ANOVA is a technique that will enable us to test the significance of the difference among more than two sample mean.

ASSUMPTION:

-) The observations are landom
- 2) The observations are independent.
- 3) The samples are drawn from normal fopulations
- 4) Bopulation variances are equal

BASIC PRINCIPLES:

- 1) Randomisation
- 2) Replication
- 3) Local control.

BASIC DESIGN.

- * Completely landomised design (CRD) One-way classifi
- * Randomised Block design (RBD) Two-way davificed
- * Latin square design (LSD) There-way classificati
- * Two square factorial design

Hint: - F - Rates : F = 5,2 where 5,2>5,2

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Procedure to find:

2) Sum of all the teems (T) & total no & Sample sizer)

3) Coerection factor (C·F), C·F = T²

4) 73S: Total sum & squares

= (sum & the squares of all the teems) - C·F.

B) SSC: Sum & squares between samples

5) SSE: Exect sum & squares

= 13S - SSC

4) Annova table

8) Conclusion:

1) Houre / uting Ho & H,

1) A completely sandomised design experiment with loplots and 3 treatments egave the following sendt:

plot No:: 1 2 3 4 5 6 7 8 9 10

reatment: A B C A C C A B A B

Yield: 5 4 3 7 5 1 3 4 1 4

Analyse The sendt for treatment effects.

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Treatment		yield		-	Treatment		
(74)			5	¥	3 1	200	A B C
(Na)			4	4	7 -	diegy	5 4 3
(ns)			3	5	r		3 1 1
α_{l}	$\mathcal{M}_{\mathcal{A}}$	ત્ર _ક	Total	212	200	213°	
5	4	3	12	25	16	9	
A	4	5	16	49	16	25	u pút
3	Ħ	,	()	9	49	1	
7 (MI	\$1- 000	. 1	1	DATE.	4	
16	15	9	40	84	81	35	
En	Én2	Ens		≥n,2	En.2	≥ng²	

Step 1: Formulating 140 & H1:

Ho: there & no significance déflésence between

the treatments.

H1: There is significance différence between the

treatmenti

Sty 2: To kind TAN:

$$N = n_1 + n_2 + n_3$$

= 4 + 3 + 3 = 10

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Step 8: Conservor Factor, C.F.

$$C \cdot F = \frac{7^{2}}{N} = \frac{40^{2}}{10}$$

$$= 160$$

$$step 4: Tss = \leq n_{1}^{2} + \leq n_{2}^{2} + \leq n_{3}^{2} - C \cdot F$$

$$= 84 + 81 + 35 - 160$$

$$= 40$$

$$step 5: Ssc = (\leq n_{1})^{2} + (\leq n_{2})^{2} + (\leq n_{3})^{2} - C \cdot F$$

$$= \frac{16^{2}}{4} + \frac{15^{2}}{3} + \frac{9^{2}}{3} - 160$$

$$= 6$$

$$step 6: SsE = Tss - Ssc$$

$$= 40 - 6 = 34$$

$$Step 7: Annova table:$$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Steps: Conclusion:

a: There is no right flance difference between the teatments.

2) The following teable shows The liges in hours of four bounds of electric lamps.

A: 1610 1616 1650 1680 1720 1720 1800

B: 1580 1640 1640 1700 1750

C. (466) 1550 1600 1640 1640 1660 1840 (1820)

D: 1510 1520 1530 1570 1600 1680

perform an analysis of variance and test the homogeneity of the means lives of the 4 beards of lamps. Outin: Xij - 1640 Ay(Min, Man)

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

$$n_1$$
 n_2 n_3 n_4 $rotal$ n_1 n_2 n_2 n_3 n_4 n_4 n_4 n_5 n_5 n_4 n_5 n_5 n_4 n_5 n_6 n_5 n_5 n_5 n_6 $n_$

step 1. Formulating to and H,

Ho: There is no significance difference between the 4 beards of electric bulbs.

HI: There is significance difference between the 4 beards of electric bulbs.

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Step 2: 70 quad 78N

$$T = \xi n_1 + \xi n_2 + \xi n_3 + \xi n_4$$

 $= 29 + 11 - 3 - 48 = -6$
 $N = n_1 + n_2 + n_3 + n_4$
 $= 7 + 5 + 8 + 6 = 26$

Step 5: 8SC =
$$(\frac{2}{n_1})^2$$
 $(\frac{2}{n_2})^2$ $(\frac{2}{n_3})^2$ $(\frac{2}{n_4})^2$ $(\frac{2}{n_4})^2$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - Y DESIGN OF EXPERIMENTS

Source of Valiations	Sum q Squares	Preedom	Mean	7-Ratio
Belwein Samplus (c)	SS C 202.169, 452.2404	C-1 :4-1 :3	MSC 2404 BARKUGA	10.00
Within Samples (E)	SSE			= 2.2136 Fx (3,2,2)
dip 8 : Co	nclusion:	. \$5	1498 37 22 68.10	3.05
1101	e is no rig	ghiffcance.	e, Ho is a clifference d	oftener The