UNIT-II
 8086 Assembly language programme

Write an assembly language program for calculating the factorial of a number using $\mathbf{8 0 8 6}$ microprocessor.

Input
Example 1:

Example 2:

0601	0600
02	D0

ADDRESS	MNEMONICS	comments
0400	MOV CX, [0500]	CX <- [0500]
0404	MOV AX, 0001	AX <- 0001
0407	MOV DX, 0000	DX <- 0000
040A	MUL CX	DX:AX <- AX* CX
040 C	LOOP 040A	Go To [040A] till CX->00
0410	MOV [0600], AX	$[0600]<-A X$
0414	MOV [0601], DX	$[0601]<-D X$
0418	HLT	Stop EXecution

Explanation -

1. MOV CX, [0500] loads 0500 Memory location content to CX Register
2. MOV AX, 0001 loads AX register with 0001
3. MOV DX, 0000 loads DX register with 0000
4. MUL CX multiply $A X$ with $C X$ and store result in $D X: A X$ pair
5. LOOP 040A runs loop till CX not equal to Zero
6. MOV [0600], AX store AX register content to memory location 0600
7. MOV [0601], DX store DX register content to memory location 0601
8. HLT stops the execution of program
9. Write an assembly language program in $\mathbf{8 0 8 6}$ microprocessor to convert an 8 bit BCD number into hexadecimal number.

Input Data

Offset

Output Data

Offset

Algorithm -
Assign value 500 in SI and 600 in DI.
Move the contents of [SI] in BL.
Use AND instruction to calculate AND between 0F and contents of BL.
Move the contents of [SI] in AL.
Use AND instruction to calculate AND between F0 and contents of AL.
Move 04 in CL.
Use ROR instruction on AL.
Move 0A in DL.
Use MUL instruction to multiply AL with DL.
Use ADD instruction to add AL with BL.
Move the contents of AL in [DI].
Halt the program.

0400	MOV SI, 500	SI <- 500
0403	MOV DI, 600	DI <-600
0406	MOV BL, [SI]	BL <- [SI]
0408	AND BL, OF	$B L=B L A N D ~ O F ~$
040A	MOV AL, [SI]	AL <- [SI]
040C	AND AL, FO	$B L=A L A N D F 0$
040E	MOV CL, 04	$C L=04$
0410	ROR AL, CL	Rotate AL
0412	MOV DL, OA	$D L=0 A$
0414	MUL DL	$A X=A L * D L$
0416	ADD AL, BL	$A L=A L+B L$
0418	MOV [DII, AL	[DI] <- AL

Explanation - Registers used SI, DI, AL, BL, CL, DL.

1. MOV SI,500 is used to move offset 500 to Starting Index(SI)
2. MOV DI,600 is used to move offset 600 to Destination Index(DI)
3. MOV BL,[SI] is used to move the contents of [SI] to BL
4. AND BL,OF is used to mask the higher order nibble from BL
5. MOV AL,[SI] is used to move the contents of [SI] to AL
6. AND AL,FO is used to mask the lower order nibble from BL
7. MOV CL, 04 is used to move 04 to CL
8. ROR AL,CL is used to reverse the contents of $A L$
9. MOV DL,OA is used to move OA to DL
10. MUL DL is used to multiply contents of $A L$ with $D L$
11. ADD AL,BL is used to add contents of $A L$ and $B L$
12. MOV [DI],AL is used to move the contents of AL to [DI]
13. HLT stops executing the program and halts any further execution
3.5

THANK YOU

