SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

PART-A (TWO MARK QUESTIONS)

1. Determine the binomial distribution whose mean is 9 and whose standard deviation is $\frac{3}{2}$.

Answer:

$$
\begin{aligned}
& \mathrm{np}=9 \text { and } \mathrm{npq}=\frac{9}{4} . \quad \mathrm{q}=\frac{n p q}{n p}=\frac{1}{4} \Rightarrow p=1-q=\frac{3}{4} \\
& \mathrm{np}=9 \Rightarrow \mathrm{n}=9 \times \frac{4}{3}=12 \\
& \therefore \mathrm{P}[\mathrm{X}=\mathrm{r}]=12 C_{r} \cdot\left[\frac{3}{4}\right]^{r}\left[\frac{1}{4}\right]^{12-r}, r=0,1,2, \ldots . .12
\end{aligned}
$$

2. A die is thrown 3 times. If getting a ' 6 ' is considered a success, find the probability of atleast two successes.
Answer:
$\mathrm{P}=1 / 6 ; \quad \mathrm{q}=5 / 6 ; \quad \mathrm{n}=3$.
$\mathrm{P}[$ atleast two successes $]=\mathrm{P}(2)+\mathrm{P}(3)$

$$
=3 C_{2} \cdot\left[\frac{1}{6}\right]^{2} \frac{5}{6}+3 C_{3} \cdot\left[\frac{1}{6}\right]^{3}=\frac{2}{27}
$$

3. Find the MGF of binomial distribution.

Answer:

$$
\begin{aligned}
M_{x}(t) & =\sum_{r=0}^{n} n C_{r} \cdot\left(p e^{t}\right)^{r} \cdot q^{n-r} \\
& =\left(q+p e^{t}\right)^{n}
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

19MAT204 - PROBABILITY AND STATISTICS

4. For a random variable $\mathrm{X}, M_{x}(t)=\frac{1}{81}\left(e^{t}+2\right)^{4}$, find $\mathrm{P}[\mathrm{X} \leq 2]$.

Answer:

$$
M_{x}(t)=\left(\frac{2}{3}+\frac{1}{3} e^{t}\right)^{4} .
$$

For Binomial distribution, $M_{x}(t)=\left(q+p e^{t}\right)$

$$
\begin{array}{lll}
\therefore \mathrm{n}=4, & \mathrm{q}=2 / 3, & \mathrm{p}=1 / 3 \\
\therefore & \mathrm{P}[\mathrm{X} \leq 2] & =\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2) \\
& & =\left(\frac{2}{3}\right)^{4}+4 C_{1} \frac{1}{3}\left(\frac{2}{3}\right)^{3}+4 C_{1}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2} \\
& & =\frac{1}{81}[16+32+24]=\frac{72}{81} \\
& & =0.8889
\end{array}
$$

5. The mean and variance of a binomial variance are 4 and $4 / 3$ respectively, find $P[X \geq 1]$.

Answer:

$$
\begin{aligned}
& \mathrm{np}=4, \quad \mathrm{npq}=\frac{4}{3} \Rightarrow q=\frac{1}{3} \text { and } p=\frac{2}{3} \quad \therefore n=4 \times \frac{3}{2}=6 . \\
& \mathrm{P}[\mathrm{X} \geq 1]= \\
& =1-\mathrm{P}[\mathrm{X}<1]=1-\mathrm{P}[\mathrm{X}=0] \\
& = \\
& 1-\left(\frac{1}{3}\right)^{6}=0.9986
\end{aligned}
$$

6. If 6 of 18 new buildings in a city violate the building code, what is the probability that a building inspector, who randomly selects 4 of the new buildings for inspection, will catch none of the buildings that violate the buildings code?

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

19MAT204 - PROBABILITY AND STATISTICS

Answer:

$\mathrm{P}=$ probability that a building violates building code.

$$
\Rightarrow \quad \mathrm{P}=\frac{6}{18}=\frac{1}{3} \therefore q=\frac{2}{3} \text { here } \mathrm{n}=4,
$$

Required probability $=q^{4}=\left(\frac{2}{3}\right)^{4}=0.1975$
7. For a binomial distribution, mean is 6 and standard deviation is $\sqrt{2}$. Find the first two terms of the distribution.

Answer:

$\mathrm{np}=6, \quad \mathrm{npq}=2 ; q=\frac{2}{3} \Rightarrow q=\frac{1}{3} \quad \therefore p=\frac{2}{3}$. Here $\mathrm{n}=9$.
The first two terms are $\left(\frac{1}{3}\right)^{9}, 9 C_{1}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{8}$
8. A certain rare blood can be found in only 0.05% of people. If the population of a randomly selected group is 3000 , what is the probability that atleast 2 people in the group have this rare blood type ?

Answer:

$$
\begin{array}{ll}
\mathrm{P}=0.05 \% & \Rightarrow \mathrm{p}=0.0005 ; \mathrm{n}=3000 ; \wedge=n p \\
\Rightarrow & \wedge=3000 \times \frac{5}{10000}=1.5 \\
P[X \geq 2]= & 1-\mathrm{P}(\mathrm{X}<2)=1-\mathrm{P}(\mathrm{X}=1) \\
& =1-e^{-1.5}\left(1+\frac{1.5}{1!}\right)=0.4422
\end{array}
$$

SNS COLLEGE OF TECHNOLOGY

（An Autonomous Institution）
19MAT204－PROBABILITY AND STATISTICS

9．It is known that 5% of the books bound at a certain bindery have defective bindings．Find the probability that 2 of 100 books bound by this bindery will have defective bindings．

Answer：
人 $=\mathrm{np} \Rightarrow 人=100 \times 5 / 100=5$
$\therefore \mathrm{P}[\mathrm{X}=2]=\frac{5^{2} e^{-5}}{2!}=0.084$
10．If X is a poisson variate such that $P(X=2)=9 P(X=4)+90 P(X=6)$ ，find the variance．

Answer：
$\frac{e^{-\lambda} \lambda^{2}}{2!}=\frac{9 e^{-\lambda} \lambda^{4}}{4!}+\frac{90 e^{-\lambda} \lambda^{6}}{6!} \Rightarrow \lambda^{4}+3 \lambda^{2}-4=0$
$\Rightarrow\left(\wedge^{2}+4\right)\left(\wedge^{2}-1\right)=0$
$\therefore \wedge^{2}=1 \Rightarrow$ variance $=人=1$ ．
11．The moment generating function of a random variable X is given by $M_{x}(t)=$ $e^{3\left(e^{t}-1\right)}$ ．Find $\mathrm{P}(\mathrm{X}=1)$

Answer：
$M_{x}(t)=e^{\wedge\left(e^{t}-1\right)}=e^{3\left(e^{t}-1\right)} \Longrightarrow \wedge=3$
$\mathrm{P}(\mathrm{X}=1)=\wedge e^{-\wedge} \Longrightarrow \mathrm{P}(\mathrm{X}=1)=3 e^{-3}$.
12．State the conditions under which the position distribution is a limiting case of the Binomial distribution．

Answer：

i） $\mathrm{n} \rightarrow \infty$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
ii) $p \rightarrow 0$
iii) $n p=\wedge$, a constant
13. Show that the sum of 2 independent poisson variates is a poisson variates.

Answer:

Let $\mathrm{X} \sim \mathrm{P}\left(\Lambda_{1}\right) \quad$ and $\quad \mathrm{Y} \sim \mathrm{P}\left(\wedge_{2}\right)$
Then $M_{x}(t)=e^{\wedge_{1}\left(e^{t}-1\right)} ; \quad M_{y}(t)=e^{\wedge_{2}\left(e^{t}-1\right)}$
$M_{x+y}(t)=M_{x}(t) M_{y}(t)=e^{\left(e^{t}-1\right)\left(\lambda_{1}+\lambda_{2}\right)}$
$\Longrightarrow \mathrm{X}+\mathrm{Y}$ is also a poisson variate
14. In a book of 520 pages, 390 typo-graphical errors occur. Assuming poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error.

Answer:

$$
\begin{gathered}
\wedge=\frac{390}{520}=0.75 \\
P(\mathrm{X}=\mathrm{x})=\frac{e^{-\curlywedge} \wedge^{x}}{x!}=\frac{e^{-0.75}(0.75)^{x}}{x!}, \mathrm{x}=0.1 .2, \ldots
\end{gathered}
$$

Required probability $=[\mathrm{P}(\mathrm{X}=0)]^{5}=\left(e^{-0.75}\right)^{5}=e^{-3.75}$
15.If X is a poisson variate such that $P(X=2)=2 / 3 P(X=1)$ evaluate $P(X=3)$.

Answer:

$$
\begin{aligned}
& \frac{e^{-\lambda} \lambda^{2}}{2!}=\frac{2}{3} \frac{e^{-\lambda} \curlywedge}{1!} \Rightarrow \lambda=\frac{4}{3} \\
& \therefore \mathrm{P}[\mathrm{X}=3]=\frac{e^{-\lambda\left(\frac{4}{3}\right)^{3}}}{3!}
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

19MAT204 - PROBABILITY AND STATISTICS

16.If for a poisson variate $\mathrm{X}, \mathrm{E}\left(X^{2}\right)=6$, What is $\mathrm{E}(\mathrm{X})$?

Answer:

$$
\begin{aligned}
\wedge^{2}+\curlywedge=6 & \Rightarrow \wedge^{2}+\curlywedge-6 \\
& =0 \Rightarrow(\curlywedge+3)(\curlywedge-2)=0 \Rightarrow \curlywedge=2,-3
\end{aligned}
$$

But $\wedge>0, \wedge=2 . E(X)=\wedge=2$
17. If X is a poisson variate with mean \wedge, show that $\mathrm{E}\left(X^{2}\right)=\wedge E(X+1)$.

Answer:
$\mathrm{E}\left(X^{2}\right)=\wedge^{2}+\curlywedge$
$\mathrm{E}(\mathrm{X}+1)=\mathrm{E}(\mathrm{X})+1=\mathrm{N}+1$
$\therefore \mathrm{E}\left(X^{2}\right)=\wedge(\wedge+1)=\wedge E(X+1)$
18. What are mean and variance of the geometric distribution defined $\mathrm{P}[\mathrm{X}=\mathrm{x}]=$ $q^{2} p, \mathrm{x}=0,1,2, \ldots \ldots$

Answer:

Mean $=\frac{q}{p}$ and variance $=\frac{q}{p^{2}}$
19.A Couple decides to make have children until they have male child. If the probability of a male child in their community is $1 / 3$, how many children are they expected to have before the first male child is born ?

Answer:

The waiting time for a male child has a geometric distribution with $\mathrm{P}=1 / 3$. $\mathrm{Q}=1-\mathrm{p}=2 / 3$, Hence the expected number of children (ie., mean) $=\mathrm{q} / \mathrm{p}=2$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
20. Identify the distribution with the m.g.f. $M_{x}(t)=e^{t}\left(5-4 e^{t}\right)^{-1}$.

Answer:

$$
\begin{aligned}
M_{x}(t)= & \frac{\frac{1}{5} e^{t}}{1-\frac{4}{5} e^{t}} . \text { If } \mathrm{P}[\mathrm{X}=\mathrm{r}]=\mathrm{p} q^{r-1}, r=1,2, \ldots \ldots \text { then } \\
& M_{x}(t) \sum_{r=1}^{\infty} e^{t r} q^{r-1} p=p e^{t} \sum_{r=1}^{\infty}\left(q e^{t}\right)^{r-1} \Rightarrow M_{x}(t)=\frac{p e^{t}}{1-q e^{t}}
\end{aligned}
$$

The given MGF is the m.g.f of geometric distribution with parameter $p=1 / 5$ whose p.m.f. is $\mathrm{P}[\mathrm{X}=\mathrm{r}]=p q^{r-1}, r=1,2, \ldots$.
21. Find the MGF of a RV which is uniformly distributed over $(-1,2)$.

Answer:

$$
M_{x}(t)=\frac{1}{3} \int_{-1}^{2} e^{t x} d x=\frac{e^{2 t}-e^{-t}}{3 t} \text { for } \mathrm{t} \neq 0 \text { and } M_{x}(t)=\frac{1}{3} \int_{-1}^{2} d x=1 \text { for } \mathrm{t}=0
$$

22.If X has uniform distribution in ($-3,3$,find $\mathrm{P}[(\mathrm{X}-2)<2]$

Answer:

P.d.f $f(x)=1 / 6,-3<X<3, \quad$ and $=0$; otherwise
$\mathrm{P}[(\mathrm{X}-2)<2]=\mathrm{P}[0<\mathrm{X}<4]=\frac{1}{6} \int_{0}^{3} d x=3 / 6=1 / 2$.
23. If x has uniform distribution in $(-a, a), a>0$, find ' a ' such that $P(X<1)=P(X>1)$.

Answer:

P.d.f $\mathrm{f}(\mathrm{x})=\frac{1}{2 a},-\mathrm{a}<\mathrm{X}<\mathrm{a}$ and $=0$, otherwise

$$
\mathrm{P}[\mathrm{X}<1]=1 / 2 \Rightarrow \int_{-1}^{1} \frac{1}{2 a} d x \frac{1}{2} \Rightarrow \frac{1}{a}=\frac{1}{2} \quad \therefore a=2
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
24.If the MGF of a continuous R.V X is $\frac{e^{5 t}-e^{4 t}}{t}, \mathrm{t} \neq 0$, what is the distribution of X ? what are its mean and variance?

Answer:

$M_{x}(t)$ of uniform distribution in (a, b) is
$M_{x}(t)=\frac{e^{b t}-e^{a t}}{(b-a)^{t}}$. The distribution of X is uniform in $(4,5)$
Mean $=\frac{b+a}{2}=9 / 2$ and variance $=\frac{(b+a)^{2}}{12}=\frac{1}{12}$
25. If X has geometric distribution with p.m.f $\mathrm{P}[\mathrm{X}=\mathrm{r}]=\mathrm{p} q^{r-1}, \mathrm{r}=1,2,3, \ldots$. find $\mathrm{P}[\mathrm{X}$ is odd].

Answer:

$$
\mathrm{P}[\mathrm{X} \text { is odd }]=\mathrm{p}+\mathrm{p} q^{2}+\mathrm{p} q^{4}+\cdots=\frac{p}{1-q^{2}}=\frac{1}{1-q}
$$

26.Find the mean and the variance of the distribution $\mathrm{P}[\mathrm{X}=\mathrm{x}]=2^{-x}, x=1,2, \ldots$

Answer:

$$
\begin{aligned}
& \mathrm{P}[\mathrm{X}=\mathrm{x}]=\frac{1}{2^{x}}=\left(\frac{1}{2}\right)^{x-1} \frac{1}{2}, x=1,2, \ldots \ldots \\
& \mathrm{P}=1 / 2 \text { and } \mathrm{q}=1 / 2 \\
& \text { Mean }=\mathrm{q} / \mathrm{p}=1 ; \quad \text { variance }=\mathrm{q} / p^{2}=2
\end{aligned}
$$

27.If X is uniformly distributed with mean 1and variance $4 / 3$, find $P(X<0)$.

Answer:

Let $\mathrm{X} \sim U(a, b)$ then $\frac{b+a}{2}=1$ and $\frac{(b-a)^{2}}{12}=4 / 3$ $\mathrm{a}+\mathrm{b}=2 \mathrm{a}$ nd $\mathrm{b}-\mathrm{a}=4$. Solving $\mathrm{a}=-1, \mathrm{~b}=3$.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

19MAT204 - PROBABILITY AND STATISTICS

$$
\mathrm{P}(\mathrm{x})=1 / 4,-1<\mathrm{x}<3 . \mathrm{P}(\mathrm{X}<0)=\int_{-1}^{0} p(x) d x=\frac{1}{4}
$$

28.The time (in hours) required to repair a machine is exponentially distributed with parameter $\wedge=\frac{1}{2}$. What is the probability that a repair takes atleast 10 hours given that its duration exceeds 9 hours ?

Answer:

Let X be the $\mathrm{R} . \mathrm{V}$ which represents the time to repair the machine.
$\mathrm{P}[\mathrm{X} \geq 10 / x \geq 9]=\mathrm{P}(\mathrm{X} \geq 1)$ (by memory less property)
$=\int_{1}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} d x=0.6065$
29.The time (in hours) required to repair a machine is exponentially distributed with parameter $\wedge=\frac{1}{3}$. What is the probability that the repair time exceeds 3 hours?

Answer:

X- represent the time to repair the machine
P.d.f of $\mathrm{X}, \mathrm{f}(\mathrm{x})=\frac{1}{3} e^{-\frac{x}{3}}, \mathrm{x}>0$
$\mathrm{P}(\mathrm{x}>3)=\int_{3}^{\infty} \frac{1}{3} e^{-\frac{x}{3}} d x=e^{-1}=0.3679$
30.Find the MGF of an exponential distribution with parameter \wedge.

Answer:
$M_{x}(t)=\wedge \int_{0}^{\infty} e^{t x} e^{-\wedge x} d x=\wedge \int_{0}^{\infty} e^{-(\wedge-x) x} d x$
$=\frac{\wedge}{\wedge-t}=\left(1-\frac{t}{\curlywedge}\right)^{-1}$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
31.Write down the MGF of gamma distribution and hence find its mean and variance.

Answer:

$$
\begin{aligned}
& M_{x}(t)=(1-t)^{-\lambda}=1+\lambda t+\frac{\Lambda^{2}+\lambda}{2!} t^{2}+\cdots \\
& M e a n=\lambda ; \mathrm{E}\left(X^{2}\right)=\wedge^{2}+\lambda \Rightarrow \operatorname{var}(X)=\hat{} .
\end{aligned}
$$

32.Mention any four properties of normal distribution ?

Answer:
(1) The curve is bell shaped
(2)Mean, Median, Mode coincide.
(3) All odd central moments vanish
(4) X -axis is an asymptote to the normal curve
33.If X is normal variate with mean 30 and S.D 5, find $\mathrm{P}[26<\mathrm{X}<40]$

Answer:

$$
\begin{gathered}
\mathrm{P}[26<\mathrm{X}<40]=\mathrm{P}[-0.8 \leq \mathrm{Z} \leq 2] \text { where } \mathrm{Z}=\frac{X-30}{5} \\
=\mathrm{P}[0 \leq \mathrm{Z} \leq 0.8]+\mathrm{P}[0 \leq \mathrm{Z} \leq 2] \\
=0.2881+0.4772=0.7653
\end{gathered}
$$

34.If X is a normal variate with mean 30 and s.d5, find $\mathrm{P}[|X-30| \leq 5]$.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

Answer:

$$
\begin{gathered}
\mathrm{P}[|X-30| \leq 5]=\mathrm{P}[25 \leq \mathrm{X} \leq 35]=\mathrm{P}[-1 \leq \mathrm{Z} \leq 1] \\
\quad=2 \mathrm{P}(2 \leq \mathrm{Z} \leq 1)=2(0.3413)=0.6826
\end{gathered}
$$

35.X is normally distributed R.V with mean 12 and SD 4. Find $\mathrm{P}[\mathrm{X} \leq 20]$.

Answer:

$$
\begin{aligned}
\mathrm{P}[\mathrm{X} \leq 20]= & \mathrm{P}[\mathrm{Z} \leq 2] \text { where } \mathrm{Z}=\frac{X-12}{4} \\
& =\mathrm{P}[-\infty \leq \mathrm{Z} 0]+\mathrm{P}[0 \leq \mathrm{Z} \leq 2] \\
& =0.5+0.4772=0.9772
\end{aligned}
$$

36.For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 50 is 48 . Find the mean and s.d of the distribution.

Answer:

Mean $\mathrm{A}+\mu_{1}^{\prime} \Rightarrow$ Mean $=10+40=50$
$\mu_{1}^{\prime}($ about the point $X=50)=48 \Rightarrow \mu_{4}=48$
Since mean is $50,3 \sigma^{4}=48$

$$
\sigma=2
$$

37.If X is normally distributed with mean 8 and s.d 4 , find $\mathrm{P}(10 \leq \mathrm{X} \leq 15)$.

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

$$
\begin{aligned}
& \mathrm{P}(10 \leq \mathrm{X} \leq 15)=\mathrm{P}[0.5 \leq \mathrm{X} \leq 1.75] \\
& =\mathrm{P}[0.5 \leq \mathrm{X} \leq 1.75]-\mathrm{P}[0 \leq \mathrm{X} \leq 0.5] \\
& =0.2684
\end{aligned}
$$

38. X is a normal variate with mean 1 and variance $4, \mathrm{Y}$ is another normal variate independent of X with mean 2 and variance 3 , what is the distribution of $\mathrm{X}+2 \mathrm{Y}$?

Answer:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}+2 \mathrm{Y}]=\mathrm{E}(\mathrm{X})+2 \mathrm{E}(\mathrm{Y})=1+4=5 \\
& \mathrm{~V}[\mathrm{X}+2 \mathrm{Y}]=\mathrm{V}(\mathrm{X})+4 \mathrm{~V}(\mathrm{Y})=4+4(3)=16 \\
& \mathrm{X}+2 \mathrm{Y} \sim \mathrm{~N}(5,16) \text { by additive property. }
\end{aligned}
$$

39.If X is a C.R.V with p.d.ff $(\mathrm{x})=\frac{x}{12}$ in $1<\mathrm{x} 5$ and $=0$ else where, find the p.d.f of $\mathrm{Y}=2 \mathrm{X}-3$

Answer:

$$
\begin{aligned}
& \mathrm{Y}=2 \mathrm{X}-3 \Rightarrow \frac{d x}{d y}=\frac{1}{2} \\
& \quad f_{y}(\mathrm{y})=f_{x}(\mathrm{x})\left|\frac{d x}{d y}\right| \Rightarrow f_{y}(\mathrm{y})=\frac{Y+3}{48} \text { in }-1<\mathrm{y}<7 .
\end{aligned}
$$

40.If the continuous R.V X has p.d.f $f(x)=\frac{2(x+1)}{9}$, in $-1<X<2$ and $=0$ else where, find the p.d.f of $\mathrm{Y}=X^{2}$

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

$$
f_{y}(\mathrm{y})=\frac{2}{\sqrt[9]{y}}, 0<\mathrm{y}<1
$$

And $f_{y}(\mathrm{y})=\frac{1}{9}\left(1+\frac{1}{\sqrt{y}}\right), 1<\mathrm{y}<4$
41.The p.d.f of a R.V X is given by $\mathrm{f}(\mathrm{x})=\left[\begin{array}{c}2 \mathrm{x}, 0<\mathrm{x}<1 \\ 0, \text { else where, }\end{array}\right]$ find the p.d.f of
$\mathrm{Y}=8 X^{3}$

Answer:

$\mathrm{Y}=8 X^{3}$ is strictly increasing function in $(0,1)$

$$
\begin{aligned}
& f_{y}(\mathrm{y})=f_{x}(\mathrm{x})\left|\frac{d x}{d y}\right| \text { where } \mathrm{x}=\frac{1}{2} y^{1 / 3} \\
& \Rightarrow f_{y}(\mathrm{y})=\frac{1}{6} y^{-1 / 3}, 0<\mathrm{y}<8
\end{aligned}
$$

42. If X is a normal R.V with mean zero and variance σ^{2}, Find the p.d.f of $\mathrm{Y}=e^{x}$.

Answer:

$$
\begin{aligned}
& f_{y}(Y)=f_{x}(x)\left|\frac{d x}{d y}\right|=\frac{1}{y} f_{x}(\log y) \\
& =\frac{1}{\sigma y \sqrt{2 \pi}} \exp \left[-(\log y-\mu)^{2} / 2 \sigma^{2}\right]
\end{aligned}
$$

43.If X has an exponential distribution with parameter 1 , find the pdf of $\mathrm{y}=\sqrt{x}$.

Answer:
$f_{y}(Y)=f_{x}(x)\left|\frac{d x}{d y}\right|=2 \mathrm{y} e^{-y^{2}}, y>0$
44.If X is uniformly distributed in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, find the pdf of $\mathrm{Y}=\tan \mathrm{X}$.

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

$$
\begin{aligned}
& f_{y}(Y)=\frac{1}{x} ; \quad x=\tan ^{-1} y \Rightarrow \frac{d x}{d y}=\frac{1}{1+y^{2}} \\
& f_{y}(Y)=f_{x}(x)\left|\frac{d x}{d y}\right| \Rightarrow f_{y}(Y)=\frac{1}{\pi(1+y)^{2}},-\infty<y<\infty
\end{aligned}
$$

45. If X is uniformly distributed in $(-1,1)$, find the pdf of $\mathrm{y}=\sin \frac{\pi x}{2}$.

Answer:

$$
\begin{aligned}
& f_{x}(x)=\frac{1}{2} \quad, \quad-1<x<1 ;=0, \text { otherwise. } \\
& \frac{d y}{d x}=\cos \left(\frac{\pi x}{2}\right)\left(\frac{\pi}{2}\right)=\frac{d x}{d y} \\
& \quad=\frac{2}{\pi} \cdot \frac{1}{\sqrt{1-y^{2}}} \text { for }-1 \leq y \leq 1 . \\
& \quad f_{y}(Y)=\frac{1}{2}\left[\frac{2}{\pi} \cdot \frac{1}{\sqrt{1-y^{2}}}\right]=f_{y}(Y)=\frac{2}{\pi} \cdot \frac{1}{\sqrt{1-y^{2}}} \text { for }-1 \leq y \leq 1 .
\end{aligned}
$$

46.If the RV X is uniformly distributed over $(-1,1)$, Find the density function of $y=$ $\cos \frac{\pi x}{2}$.

Answer:

$$
f_{y}(Y)=\frac{1}{\pi \sqrt{1-y^{2}}} \text { for } 0 \leq y \leq 1
$$

47. The pdf of a RV X is $\mathrm{f}(\mathrm{x})=2 \mathrm{x}, 0<\mathrm{x}<1$, pdf of $\mathrm{y}=3 \mathrm{X}+1$.

Answer:

$$
\frac{d x}{d y}=\frac{1}{3} ; f_{y}(y)\left|\frac{d x}{d y}\right| f_{x}(x) \Rightarrow f_{y}(y)=\frac{2}{9}(y-1) \text { in } 1<y<4 .
$$

