SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

PART-A (TWO MARK QUESTIONS)

1. Define Probability:

If there are n equally likely mutually exclusive and exhaustive outcomes and m of them are favourable to an event A, Then the probability of the happening of A is $\mathrm{P}(\mathrm{A})=$ No of favourable cases

Total no of exhaustive cases
2. Define mutually exclusive events:

Two are said to be mutually exclusive if the occurrence of one event affect the occurrence of other event.

Eg: if a coin is tossed, the events head and tail are mutually exclusive.
3. Define about axioms of probability

Let S be the sample space and A be an event. P be a real valued function defined on $\mathrm{P}(\mathrm{S})$. Then $\mathrm{P}(\mathrm{A})$ is called the probability of the event A if P satisfies the following conditions:
i) For every event $\mathrm{A}, 0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
ii) $\mathrm{P}(\mathrm{S})=1$
iii) If A1, A2,An are the mutually exclusive events then

$$
\mathrm{P}(\mathrm{~A} 11 \mathrm{U} A 2 \mathrm{U} \ldots \ldots . \mathrm{U} \mathrm{An})=\mathrm{P}(\mathrm{~A} 1)+\mathrm{P}(\mathrm{~A} 2)+\ldots \ldots \ldots \ldots .+\mathrm{P}(\mathrm{An})
$$

4. What is the chance that a leap year selected at random will contain 53 Sundays?

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

For a leap year, there are 366 days. ie., 52 weeks +2 days.
The possible 2 days are Sunday and Monday, Monday and Tuesday, Tuesday and Wednesday, Wednesday and Thursday, Thursday and Friday, Friday and Saturday, Saturday and Sunday.
\therefore Probability of leap year containing 53 Sundays= $2 / 7$
5. Four persons are chosen at random from a group containing 3 men, 2 women and 4 children. Show that the chance of exactly 2 of them being children is 10/21.

Total number of persons $=3+2+4=9$
Four persons can be selected in $9^{c} 4$ ways.
Probability of selecting exactly 2 children and the remaining 2 from among 3 men and 2 women

$$
=\frac{4^{c} 2 \times 5^{c} 2}{9^{c} 4}=\frac{10}{21}=0.476
$$

6. One card is drawn from a standard pack of 52 . What is the chance that it is either a king or a queen.
$\mathrm{P}(\mathrm{A})=\frac{4^{c} 1}{52^{c} 1} ; \mathrm{P}(\mathrm{B})=\frac{4^{c} 1}{52^{c} 1}$
Here A and B are mutually exclusive.
$\mathrm{P}(\mathrm{A} U B)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\frac{4}{52}+\frac{4}{52}=\frac{2}{13}$
7. State Baye's theorem.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

If $B_{1}, B_{2} \ldots \ldots \ldots B_{n}$ are a set of exhaustive and mutually exclusive events of a sample space and A is any event associated with $B_{1}, B_{2} \ldots \ldots \ldots B_{n}$ such that

$$
\mathrm{P}\left(B_{i} / A\right)=\frac{\mathrm{P}\left(B_{i}\right) \cdot \mathrm{P}\left(\mathrm{~A} / B_{i}\right)}{\sum_{i=1}^{n} \mathrm{P}\left(B_{i}\right) \cdot \mathrm{P}\left(\mathrm{~A} / B_{i}\right)}
$$

8. Define i) Discrete random variable
ii) Continuous random variable
i) Let X be a random variable, if the number of possible values of X is finite or count ably finite, then X is called a discrete random variable.
ii) A random variable X is called the continuous random variable, if x takes all its possible values in an interval.
9. Define probability mass function (PMF):

Let X be the discrete random variable taking the values , $X_{1}, X_{2} \ldots \ldots \ldots$ Then the number $\mathrm{P}\left(X_{i}\right)=\mathrm{P}\left(X=X_{i}\right)$ is called the probability mass function of X and it satisfies the following conditions.
i) $\quad \mathrm{P}\left(X_{i}\right) \geq 0$ for all;
ii) $\quad \sum_{i=1}^{\infty} \mathrm{P}\left(X_{i}\right)=1$
10.Define probability Density function (PDF):

Let x be a continuous random variable. The Function $f(x)$ is called the probability density function (PDF) of the random variable x if it satisfies.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
i) $\quad \mathrm{f}(\mathrm{x}) \geq 0$
ii) $\quad \int_{-\infty}^{\infty} f(x) d x=1$
11. Define cumulative distribution function (CDF):

Let x be a random variable. The cumulative distribution function, denoted by $\mathrm{F}(\mathrm{X})$ and is given by $\mathrm{F}(\mathrm{X})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$
12.If x is a discrete R.V having the p.m.f

$\mathrm{X}:$	-1	0	1
$\mathrm{P}(\mathrm{X}):$	k	2 k	3 k

Find $\mathrm{P}(\mathrm{x} \geq 0)$

$$
\begin{aligned}
& \text { Answer: } 6 k=1 \Rightarrow k=\frac{1}{6} \\
& P[x \geq 0]=2 k+3 k \Rightarrow P[x \geq 0]=\frac{1}{6}
\end{aligned}
$$

13. The random variable x has the p.m.f. $\mathrm{P}(\mathrm{x})=\frac{x}{15}, \mathrm{x}=1,2,3,4,5$ and $=0$ else where.

Find $P\left[\frac{1}{2}<x<\frac{5}{2} / x>1\right]$.

Answer:

$$
\mathrm{P}\left[\frac{1}{2}<x<\frac{5}{2} / x>1\right]=\frac{P[x=2]}{P(x>1)}=\frac{P[x=2]}{1-P(x \leq 1)}=\frac{2 / 15}{1-1 / 15}=\frac{1}{7}
$$

14.If the probability distribution of X is given as :

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

X	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.4	0.3	0.2	0.1

Find $\mathrm{P}\left[\frac{1}{2}<x<\frac{7}{2} / x>1\right]$.
Answer :
$\mathrm{P}\left[\frac{1}{2}<x<\frac{7}{2} / x>1\right]=\frac{P[1<x<7 / 2]}{P(x>1)}=\frac{P(x=2)+P(x=3)}{1-P(x=1)}=\frac{0.5}{0.6}=\frac{5}{6}$
15.A.R.V. X has the probability function

X	-2	-1	0	1
$\mathrm{P}(\mathrm{X})$	0.4	k	0.2	0.3

Find k and the mean value of X

Answer:

$\mathrm{k}=0.1$ Mean $=\sum x P(x)=\frac{1}{10}[-8-1+0+3]=-0.6$
16.If the p.d.f of a R.V. X is $f(\mathrm{x})=\frac{x}{2}$ in $0 \leq x \leq 2$, find

$$
\mathrm{P}[x>1.5 / x>1]
$$

Answer :

$$
\mathrm{P}[x>1.5 / x>1]=\frac{P[x>1.5]}{P(x>1)}=\frac{\int_{1.5}^{2} \frac{x}{2} d x}{\int_{1}^{2} \frac{x}{2} d x}=\frac{4-2.25}{4-1}=0.5833
$$

17.If the p.d.f of a R.V.X is given by $f(x)=\{1 / 4,-2<x<2.0$, else where. Find $\mathrm{P}[|X|>1]$.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

Answer:

$$
\mathrm{P}[|\mathrm{X}|>1]=1-\mathrm{P}[|\mathrm{X}|<1]=1-\int_{-1}^{1} \frac{1}{4} d x=\frac{1}{2}
$$

18. If $f(x)=k x^{2}, 0<x<3$ is to be density function, Find the value of k.

Answer:

$$
\int_{0}^{3} k x^{2} d x=1 \Rightarrow 9 \mathrm{k}=1 \therefore \mathrm{k}=\frac{1}{9}
$$

19. If the c.d.f. of a R.V X is given by $\mathrm{F}(\mathrm{x})=0$ for $\mathrm{x}<0 ;=\frac{x^{2}}{16}$ for $0 \leq x<4$ and $=$ 1 for $x \geq 4$, find $P(X>1 / X<3)$.

Answer:

$$
P(X>1 / X<3)=\frac{P[1<X<3]}{P[0<X<3]}=\frac{F(3)-F(1)}{F(3)-F(0)}=\frac{8 / 16}{9 / 16}=\frac{8}{9}
$$

20.The cumulative distribution of X is $\mathrm{F}(\mathrm{x})=\frac{x^{3}+1}{9},-1,<X<2$ and $=$ 0 , otherwise. Find $\mathrm{P}[0<\mathrm{X}<1]$.

Answer:

$$
P[0<X<1]=F(1)-F(0)=\frac{2}{9}-\frac{1}{9}=\frac{1}{9}
$$

21. A Continuous R.V X that can assume any value between $x=2$ and $x=5$ had the p.d.f $f(x)=k(1+x)$. Find $P(x<4)$.

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

$$
\begin{aligned}
& \int_{2}^{3} k(1+x) d x=1 \Rightarrow \frac{27 k}{2}=1 \therefore k=\frac{2}{27} \\
& \mathrm{P}[\mathrm{X}<4]=\int_{2}^{4} \frac{2}{27}(1+x) d x=\frac{16}{27}
\end{aligned}
$$

22. The c.d.f of X is given by $\mathrm{F}(\mathrm{x})=\left[\begin{array}{c}0, x>0 \\ x^{2}, 0 \leq x \leq 1 \\ 1, x>1\end{array}\right.$ Find the p.d.f of x , and obtain $\mathrm{P}(\mathrm{X}>0.75)$.

Answer:

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\frac{d}{d x} \mathrm{~F}(\mathrm{x})=\left[\begin{array}{l}
2 x, 0 \leq x \leq 1 \\
0, \text { otherwise }
\end{array}\right. \\
& \mathrm{P}[\mathrm{x}<0.75]=1-\mathrm{P}[\mathrm{X} \leq 0.75]=1-F(0.75)=1-(0.75)^{2}=0.4375
\end{aligned}
$$

23. Check whether $\mathrm{f}(\mathrm{x})=\frac{1}{4} x e^{-x / 2}$ for $0<\mathrm{x}<\infty$ can be the p.d.f of X .

Answer:

$$
\begin{gathered}
=\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} \frac{x}{4} e^{-x / 2} d x=\int_{0}^{\infty} t e^{-1} d t \text { where } \mathrm{t}=\frac{x}{2} \\
=\left(-t e^{-1}-e^{-1}\right)_{0}^{\infty}=-[0-1]=1 \\
\therefore f(x) \text { is the p.d.f of } X .
\end{gathered}
$$

24.A continuous R.V X has a p.d.f $\mathrm{f}(\mathrm{x})=3 x^{2}, 0 \leq x \leq 1$. Find b such that $\mathrm{P}(\mathrm{X}>\mathrm{b})=0.05$.

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
 19MAT204 - PROBABILITY AND STATISTICS

$$
3 \int_{b}^{1} x^{2} d x=0.05 \Rightarrow 1-b^{3}=0.05 \Rightarrow b^{3}=0.95 \therefore b=(0.95)^{\frac{1}{3}}
$$

25.Let X be a random variable taking values $-1,0$ and 1 such that $\mathrm{P}(\mathrm{X}=-1)=$ $2 P(X=0)=P(X=1)$. Find the mean of $2 X-5$.

Answer:

$$
\sum P(X=x)=1 \Rightarrow 5 P(X=0)=1 \therefore P(X=0)=\frac{1}{5}
$$

Probability distribution of X:

X -1 0 1 $\mathrm{P}(\mathrm{X})$ $2 / 5$ $1 / 5$ $2 / 5$
Mean $=E(x)=\sum x p(x)=-1\left(\frac{2}{5}\right)+0\left(\frac{1}{5}\right)+1\left(\frac{2}{5}\right)=0$

$$
\mathrm{E}[2 \mathrm{X}-5]=2 \mathrm{E}(\mathrm{X})-5=2[0]-5=-5 .
$$

26. Find the cumulative distribution function $\mathrm{F}(\mathrm{x})$ corresponding to the p.d.f.

$$
F(\mathrm{x})=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty .
$$

Answer

$$
\begin{aligned}
\mathrm{F}(\mathrm{x}) & =\int_{-\infty}^{x} f(x) d x=\frac{1}{\pi} \int_{-\infty}^{x} \frac{d x}{1+x^{2}}=\frac{1}{\pi}\left[\tan ^{-1} \mathrm{x}\right] \\
& =\frac{1}{\pi}\left[\frac{\pi}{2}+\tan ^{-1} \mathrm{x}\right]
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
27.The diameter of an electric cable, say X is assumed to a continues R.V with p.d.f of given by $\mathrm{f}(\mathrm{x})=\mathrm{kx}(1-\mathrm{x}), 0 \leq x \leq 1$. Determine k and $\mathrm{P}\left(x \leq \frac{1}{3}\right)$ Answer:

$$
\begin{gathered}
\int_{0}^{1} k x(1-x) d x=1 \Rightarrow k\left[\frac{1}{2}-\frac{1}{3}\right]=1 \quad \therefore k=6 \\
P\left[X \leq \frac{1}{3}\right]=6 \int_{0}^{1 / 3}\left(x-x^{2}\right) d x=6\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1 / 3}=\left[\left(3 x^{2}-2 x^{3}\right)\right]_{0}^{1 / 3}=\frac{1}{3}-\frac{2}{27}=\frac{7}{27}
\end{gathered}
$$

28. A random variable X has the p.d.f $\mathrm{f}(\mathrm{x})$ given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}C x e^{-x} \text {, if } x>0 \\ 0 \text {, if } x \leq 0\end{array}\right.$. Find the value of C and C.D.F of X .

Answer:

$$
\begin{gathered}
C \int_{0}^{\infty} x e^{-x} d x=1 \Rightarrow C\left[x\left(-e^{-x}\right]_{0}^{\infty}=1\right. \\
\therefore C[-0+1]=1 \Rightarrow C=1 \\
C . D . F: F(x)=\int_{0}^{x} f(x) d x=1-(1+x) e^{-x} \text { for } \mathrm{x} \geq 0 .
\end{gathered}
$$

29. State the properties of cumulative distribution function.

Answer:

i) $\mathrm{F}(-\infty)=0$ and $\mathrm{F}(\infty)=1$.
ii) $\quad \mathrm{F}(\infty)$ is non - decreasing function of X .

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
iii) If $\mathrm{F}(\infty)$ is the p.d.f of X , then $\mathrm{f}(\mathrm{x})=F^{\prime}(x)$
iv) $\mathrm{P}[\mathrm{a} \leq X \leq b]=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
30. Define the raw and central moments of R.Vand state the relation between them.

Answer:

Raw moment $\mu_{r}^{\prime}=\mathrm{E}\left[X^{r}\right]$
Central moment $\mu_{r}=\mathrm{E}\left[\{X-E(X)\}^{r}\right]$.
$\mu_{r}=\mu_{r}^{\prime}{ }_{r} \mathrm{r} C_{1} \mu^{\prime}{ }_{r-1} \mu^{\prime}{ }_{r}+\mathrm{r} C_{2} \mu^{\prime}{ }_{r-2}\left(\mu_{r}^{\prime}\right)^{2}-\ldots \ldots+(-1)^{r}\left(\mu_{1}^{\prime}\right)^{r}$
31.The first three moments of a R.V.X about 2 are 1, 16, -40 . Find the mean, variance of X. Hence find μ_{3}.

Answer:
$\mathrm{E}(\mathrm{X})=\mu^{\prime}{ }_{1}+A \Rightarrow$ Mean $=1+2=3$
Variance $=\mathrm{E}\left(X^{2}\right)-\left[\mathrm{E}((X)]^{2}=16-1=15\right.$
$\mu_{3}=\mu^{\prime}{ }_{3}-3 \mu^{\prime}{ }_{2} \mu^{\prime}{ }_{1}+2\left(\mu_{1}^{\prime}\right)^{3}=-86$
32. Find the r-th moment about origin of the R.V X with p.d.f $f(x)=$

$$
\left[\begin{array}{c}
C e^{-a x}, x \geq 0 \\
0, \text { else where }
\end{array}\right.
$$

Answer:

$$
\begin{gathered}
\int_{0}^{\infty} C e^{-a x} d x=1 \Rightarrow C=a \\
\mu_{r}^{\prime}=\int_{0}^{\infty} x^{r} f(x) d x=a \int_{0}^{\infty} x^{(r+1)-1} e^{-a x} d x=\frac{\sqrt{(r+1)}}{a^{r}}=\frac{r!}{a^{r}}
\end{gathered}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
33. A C.R.V X has the p.d.f $\mathrm{f}(\mathrm{x})=k x^{2} e^{-x}, x>0$. Find the r-th moment about the origin.

Answer:

$$
\int_{0}^{\infty} k x^{2} e^{-x} d x=1 \Rightarrow k=\frac{1}{2}
$$

$\mu_{1}^{\prime}=E\left[X^{r}\right]=\frac{1}{2} \int_{0}^{\infty} x^{r+2} e^{-x} d x=\frac{1}{2} \sqrt{(r+3)}=\frac{(r+2)!}{2}$
34.If X and Y are independent R, V 's and $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$, prove that $M_{x}(t) M_{y}(t)$.

Answer:

$$
\begin{aligned}
M_{z}(t)=E\left[e^{t z}\right]=E\left[e^{t(X+Y)}\right] & =E\left[e^{t x}\right] E\left[e^{t y}\right] \\
& =M_{x}(t) M_{y}(t)
\end{aligned}
$$

35.If the MGF of X is $M_{x}(t)$ and if $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ show that $M_{y}(t)=e^{b t} M_{x}(a t)$.

Answer:

$$
M_{y}(t)=E\left[e^{t y}\right]=E\left[e^{b t} e^{a x t}\right]=e^{b t} E\left[e^{(a t) X}\right]=e^{b t} M_{x}(a t)
$$

36.If a R.V X has the MGF $\mathrm{M}(\mathrm{t})=\frac{3}{3-t}$, obtain the mean and variance of X .

Answer:

$$
\begin{aligned}
& \mathrm{M}(\mathrm{t})=\frac{3}{3\left[1-\frac{t}{3}\right]}=1+\frac{t}{3}+\frac{t^{2}}{9}+\ldots . \\
& \mathrm{E}(\mathrm{x})=\text { Co-efficient of } \frac{t}{1!} \operatorname{in}(1)=\frac{1}{3} \\
& \mathrm{E}\left(X^{2}\right)=\text { co-efficient of } \frac{t^{2}}{2!} \operatorname{in}(1)=\frac{1}{9}
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

19MAT204 - PROBABILITY AND STATISTICS

\therefore Mean $=\frac{1}{3}$ and $\mathrm{V}(\mathrm{X})=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{1}{9}$
37.If the r -th moment of a C.R.V X about the origin is r !, find the M.G. F of X .

Answer:

$$
\begin{aligned}
& M_{x}(t)=\sum_{r=0}^{\infty} E\left[X^{r}\right] \cdot \frac{t^{r}}{r!}=\sum_{r=0}^{\infty} t^{r} \\
& \quad=1+t+t^{2}+\cdots=(1-t)^{-1}=\frac{1}{1-t}
\end{aligned}
$$

38.If the MGF of a R.V. X is $\frac{2}{2-t^{\prime}}$, Find the standard deviation of x .

Answer:

$$
\begin{aligned}
& M_{x}(t)=\frac{2}{2-t}=\left(1-\frac{t}{2}\right)^{-1}=1+\frac{t}{2}+\frac{t^{2}}{4}+\cdots \\
& E(X)=\frac{1}{2} ; \mathrm{E}\left(x^{2}\right)=\frac{1}{2} ; \mathrm{V}(\mathrm{X})=\frac{1}{4} \Rightarrow S . D \text { of } X=\frac{1}{2}
\end{aligned}
$$

39.Find the M.G.F of the R.V X having p.d.f $f(x)=\left[\begin{array}{l}\frac{1}{3},-1<x<2 \\ 0,\end{array}\right.$

Answer:

$$
\begin{aligned}
& M_{x}(t)=\int_{-1}^{2} \frac{1}{3} e^{t x} d x=\frac{1}{3 t}\left[e^{2 t}-e^{-t}\right] \text { for } t \neq 0 \\
& \text { When } \mathrm{t}=0, M_{x}(t)=\int_{-1}^{2} \frac{1}{3} d x=1 \\
& \qquad \therefore M_{x}(t)=\left[\frac{e^{2 t}-e^{-t}}{3 t}, t \neq 0\right. \\
& 1, t=0
\end{aligned}
$$

40.Find the MGF of a R.V X whose moments are given by $\mu^{\prime}{ }_{r}=(r=1)$!

Answer:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS

$$
\begin{aligned}
& \quad M_{x}(t)=\sum_{r=0}^{\infty} E\left[X^{r}\right] \cdot \frac{t^{r}}{r!}=\sum_{r=0}^{\infty}(r+1) t^{r} \\
& =1+2 t+3 t^{2}+\cdots=(1-t)^{-2} \\
& \therefore M_{x}(t)=\frac{1}{(1-t)^{2}}
\end{aligned}
$$

41.Give an example to show that if p.d.f exists but M.G.F. does not exist.

Answer:
$\mathrm{P}(\mathrm{x})=\left[\begin{array}{c}\frac{6}{\pi^{2} x^{2}}, x=1,2, \ldots \\ 0, \text { otherwise }\end{array}\right.$

$$
\sum P(x)=\frac{6}{\pi^{2}} \Rightarrow \sum_{x=1}^{\infty} \frac{1}{x^{2}}=\frac{6}{\pi^{2}}\left[\frac{\pi^{2}}{6}\right]=1
$$

$\therefore \mathrm{P}(\mathrm{x})$ is a p.d.f.
But $M_{x}(t)=\frac{6}{\pi^{2}} \sum \frac{e^{t x}}{x^{2}}$, which is a divergent series

$$
\therefore M_{x}(t) \text { doesnt exist. }
$$

42. The moment generating function of a random variable X is given by $M_{x}(t)=$ $\frac{1}{3} e^{t}+\frac{4}{15} e^{3 t}+\frac{2}{15} e^{4 t}+\frac{4}{15} e^{5 t}$. Find the probability density function of X .

Answer:

X	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$1 / 3$	$4 / 15$	$2 / 15$	$4 / 15$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT204 - PROBABILITY AND STATISTICS
43.Let $M_{x}(t) \frac{1}{(1-t)}, t<1$ be the M.G.F of a R.V X. Find the MGF of the RV $\mathrm{Y}=2 \mathrm{X}+1$.

Answer:

If $\mathrm{Y}=\mathrm{aX}+\mathrm{b}, M_{y}(t)=e^{b t} M_{x}(a t) \quad \therefore M_{y}(t)=\frac{e^{t}}{1-2 t}$.
44.Suppose the MGF of a RV X is of the form $M_{x}(t)=\left(0.4 e^{t}+0.6\right)^{8}$. What is the MGF of the random variable $\mathrm{Y}=3 \mathrm{X}+2$.

Answer:

$$
\left.M_{y}(t)=e^{2 t} M_{x}(3 t)=e^{2 t}\left[(0.4) e^{3 t}=0.6\right)\right]^{8}
$$

45.The moment generating function of a RV X is $\left[\frac{1}{5}+\frac{4 e^{t}}{5}\right]^{15}$. Find the MGF of $\mathrm{Y}=2 \mathrm{X}+3$.

Answer:

If $\mathrm{Y}=2 \mathrm{X}+3$, then $M_{y}(t)=e^{3 t} M_{x}(2 t)$.

$$
\therefore M_{y}(t)=e^{3 t}\left[\frac{1}{5}+\frac{4 e^{t}}{5}\right]^{15}
$$

46. If a random variable takes the values $-1,0$ and 1 with equal probabilities, find the MGF of X .

Answer:

$$
M_{x}(t)=\sum e^{t x} P(x)=\frac{1}{3} e^{-1}+\frac{1}{3}+\frac{1}{3} e^{1}=\frac{1}{3}\left[1+e^{1}+e^{-1}\right]
$$

