Schnorr Digital Signature

- □ Also uses exponentiation in a finite (Galois)
- ☐ Minimizes message dependent computation
 - > Main work can be done in idle time
- ☐ Using a prime modulus p
 - > p-1 has a prime factor q of appropriate size
 - > typically p 1024-bit and q 160-bit (SHA-1 hash size)
- \square Schnorr Key Setup: Choose suitable primes p, q
 - > Choose a such that a = 1 mod p
 - > (a,p,q) are global parameters for all
 - > Each user (e.g., A) generates a key
 - > Chooses a secret key (number): 0 < s < q
 - > Computes his public key: $v = a^{-s} \mod q$
- User signs message by
 - Choosing random r with 0<r<q and computing x = ar mod p</p>
 - > Concatenating message with x and hashing:

$$e = H(M \mid \mid x)$$

- \triangleright Computing: $y = (r + se) \mod q$
- > Signature is pair (e, y)
- Any other user can verify the signature as follows:
 - > Computing: $x' = a^y v^e \mod p$
 - > Verifying that: e = H (M | | x')
 - $x' = a^y v^e = a^y a^{-se} = a^y se = a^r = x \mod p$

• Signature is valid only if x'=x.