

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

19ITB302-Cryptography and Network Security

UNIT-3 HASH FUNCTION AND DIGITAL SIGNATURE

Secure Hash Algorithm (SHA)

- SHA was developed by the National Institute of Standards and Technology (NIST) and published as a federal information processing standard (FIPS 180) in 1993.
- SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the standard, FIPS 180-2, that defined three new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512, respectively. Collectively, these hash algorithms are known as SHA-2
- The algorithm takes as input a message with a maximum length of less than 2128 bits and produces as output a 512-bit message digest. The input is processed in 1024-bit blocks

Step 1 Append padding bits.

- The message is padded so that its length is congruent to 896 modulo 1024 [length=896(mod 1024)]. (Eg:24+872 mod 1024=896)
- Padding is always added, even if the message is already of the desired length.
- Thus, the number of padding bits is in the range of 1 to 1024.
- The padding consists of a single 1 bit followed by the necessary number of 0 bits.

Step 2 Append length.

- A block of 128 bits is appended to the message.
- The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length.

HASH FUNCTION AND DIGITAL

SIGNATURE/CATHERINE.A/AIML/SNSCT

Step 3 Initialize hash buffer.

A 512-bit buffer is used to hold intermediate and final results of the hash function.

- a = 6A09E667F3BCC908
- b = BB67AE8584CAA73B
- c = 3C6EF372FE94F82B
- d = A54FF53A5F1D36F1
- e = 510E527FADE682D1
- f = 9B05688C2B3E6C1F
- g = 1F83D9ABFB41BD6B
- h = 5BE0CD19137E2179

Step 4 Process message in 1024-bit (128-word) blocks.

The heart of the algorithm is a module that consists of 80 rounds

Processing of SHA

+ = word-by-word addition mod 264

Figure 11.9 Message Digest Generation Using SHA-512

Processing of Single 1024 Bit Block

06/03/2024

Table 11.4 SHA-512 Constants

428a2f98d728ae22	7137449123ef65cd	b5c0fbcfec4d3b2f	e9b5dba58189dbbc
3956c25bf348b538	59f111f1b605d019	923f82a4af194f9b	ab1c5ed5da6d8118
d807aa98a3030242	12835b0145706fbe	243185be4ee4b28c	550c7dc3d5ffb4e2
72be5d74f27b896f	80deb1fe3b1696b1	9bdc06a725c71235	c19bf174cf692694
e49b69c19ef14ad2	efbe4786384f25e3	0fc19dc68b8cd5b5	240ca1cc77ac9c65
2de92c6f592b0275	4a7484aa6ea6e483	5cb0a9dcbd41fbd4	76f988da831153b5
983e5152ee66dfab	a831c66d2db43210	b00327c898fb213f	bf597fc7beef0ee4
c6e00bf33da88fc2	d5a79147930aa725	06ca6351e003826f	142929670a0e6e70
27b70a8546d22ffc	2e1b21385c26c926	4d2c6dfc5ac42aed	53380d139d95b3df
650a73548baf63de	766a0abb3c77b2a8	81c2c92e47edaee6	92722c851482353b
a2bfe8a14cf10364	a81a664bbc423001	c24b8b70d0f89791	c76c51a30654be30
d192e819d6ef5218	d69906245565a910	f40e35855771202a	106aa07032bbd1b8
19a4c116b8d2d0c8	1e376c085141ab53	2748774cdf8eeb99	34b0bcb5e19b48a8
391c0cb3c5c95a63	4ed8aa4ae3418acb	5b9cca4f7763e373	682e6ff3d6b2b8a3
748f82ee5defb2fc	78a5636f43172f60	84c87814a1f0ab72	8cc702081a6439ec
90befffa23631e28	a4506cebde82bde9	bef9a3f7b2c67915	c67178f2e372532b
ca273eceea26619c	d186b8c721c0c207	eada7dd6cde0eb1e	f57d4f7fee6ed178
06f067aa72176fba	0a637dc5a2c898a6	113f9804bef90dae	1b710b35131c471b
28db77f523047d84	32caab7b40c72493	3c9ebe0a15c9bebc	431d67c49c100d4c
4cc5d4becb3e42b6	597f299cfc657e2a	5fcb6fab3ad6faec	6c44198c4a475817

SHA-512 Round Function

 $T_{1} = h + Ch(e, f, g) + \left(\sum_{1}^{512} e\right) + W_{t} + K_{t}$ $T_{2} = \left(\sum_{0}^{512} a\right) + Maj(a, b, c)$ h = g g = f f = e $e = d + T_{1}$ d = c c = b b = a $a = T_{1} + T_{2}$ $= step number; 0 \le t \le 79$

 $Ch(e, f, g) = (e \text{ AND } f) \bigoplus (\text{NOT } e \text{ AND } g)$ the conditional function: If e then f else g $Maj(a, b, c) = (a \text{ AND } b) \bigoplus (a \text{ AND } c) \bigoplus (b \text{ AND } c)$ the function is true only of the majority (two or three) of thearguments are true $\left(\sum_{a}^{512} a\right) = \text{ROTR}^{28}(a) \bigoplus \text{ROTR}^{34}(a) \oplus \text{ROTR}^{39}(a)$

$\left(\sum_{1}^{512} e\right) = \text{ROTR}^{14}(e) \oplus \text{ROTR}^{18}(e) \oplus \text{ROTR}^{41}(e)$ ROTR^{*n*}(*x*) = circular right shift (rotation) of the 64-bit argument *x* by *n* bits

where

t