SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade
Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

19ITB302-Cryptography and Network Security

UNIT-3 HASH FUNCTION AND DIGITAL SIGNATURE

Secure Hash Algorithm (SHA)

- SHA was developed by the National Institute of Standards and Technology (NIST) and published as a federal information processing standard (FIPS 180) in 1993.
- SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the standard, FIPS 180-2, that defined three new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and SHA-512, respectively. Collectively, these hash algorithms are known as SHA-2
- The algorithm takes as input a message with a maximum length of less than 2128 bits and produces as output a 512-bit message digest. The input is processed in 1024-bit blocks

Processing of SHA

Step 1 Append padding bits.

- The message is padded so that its length is congruent to 896 modulo 1024 [length $=896(\bmod 1024)$]. (Eg:24+872 $\bmod 1024=896)$
- Padding is always added, even if the message is already of the desired length.
- Thus, the number of padding bits is in the range of 1 to 1024.
- The padding consists of a single 1 bit followed by the necessary number of 0 bits.

Step 2 Append length.

- A block of 128 bits is appended to the message.
- The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length.

Step 3 Initialize hash buffer.
A 512-bit buffer is used to hold intermediate and final results of the hash function.

- $\mathrm{a}=6 \mathrm{~A} 09 \mathrm{E} 667 \mathrm{~F} 3 \mathrm{BCC} 908$
- $b=$ BB67AE8584CAA73B
- $\mathrm{c}=3 \mathrm{C} 6 \mathrm{EF} 372 \mathrm{FE} 94 \mathrm{~F} 82 \mathrm{~B}$
- $\mathrm{d}=\mathrm{A} 54 \mathrm{FF} 53 \mathrm{~A} 5 \mathrm{~F} 1 \mathrm{D} 36 \mathrm{~F} 1$
- $\mathrm{e}=510 \mathrm{E} 527 \mathrm{FADE} 682 \mathrm{D} 1$
- $\mathrm{f}=9 \mathrm{~B} 05688 \mathrm{C} 2 \mathrm{~B} 3 \mathrm{E} 6 \mathrm{C} 1 \mathrm{~F}$
- $\mathrm{g}=1 \mathrm{~F} 83 \mathrm{D} 9 \mathrm{ABFB} 41 \mathrm{BD} 6 \mathrm{~B}$
- $\mathrm{h}=5$ BE0CD19137E2179

Step 4 Process message in 1024-bit (128-word) blocks.
The heart of the algorithm is a module that consists of 80 rounds

Processing of SHA

Processing of Single 1024 Bit Block

428a2f98d728ae22	$7137449123 \mathrm{ef65cd}$	b5cofbcfec4d3b2f	e9b5dba58
3956c25bf348b538	59f111f1b605d019	923f82a4af194f9b	ab1c5ed5da6d8118
d807aa98a3030242	12835b0145706fbe	243185be4ee4b28c	$550 c 7 d c 3 d 5 f f b$
72be5d74f27b896f	80deb1fe3b1696b1	$9 \mathrm{bdc06a725c71235}$	c19bf174Cf692694
e49b69c19ef14ad2	efbe4786384f25e3	0fc19dc68b8cd5b5	240calcc77ac9c65
2de92c6f592b0275	4a7484aa6ea6e483	5cb0a9dcbd41fbd4	76f988da831153b5
983e5152ee66dfab	a831c66d2db43210	b00327c898fb213f	bf597fc7beef0ee4
c6eoobf33da88fc2	d5a79147930aa725	06ca6351e003826f	142929670a0e6e70
27b70a8546d22ffc	2e1b21385c26c926	$4 \mathrm{~d} 2 \mathrm{c} 6 \mathrm{dfc5ac42aed}$	53380d139d95b3df
650a73548baf63de	766a0abb3c77b2a8	81c2c92e47edaee6	92722c851482353b
a2bfe8a14cf10364	a81a664bbc423001	c24b8b70dof89791	c76c51a30654be30
d192e819d6ef5218	d69906245565a910	£40e35855771202a	$106 \mathrm{aa} 07032 \mathrm{bbd1b8}$
19a4c116b8d2doc8	$1 \mathrm{e} 76 \mathrm{c} 085141 \mathrm{ab53}$	2748774 cdf8eeb99	34b0bcb5e19b48a8
391c0cb3c5c95a63	$4 \mathrm{ed8a} 4 \mathrm{ae3418acb}$	5b9cca4f7763e373	682e6ff3d6b2b8a3
748f82ee5defb2fc	78a5636f43172f60	84c87814a1f0ab72	8cc702081a6439ec
90befffa23631e28	a4506cebde82bde9	bef9a3f7b2c67915	c67178£2e372532b
ca273eceea26619c	d186b8c721c0c207	eada7dd6cde0eble	f57d4£7fee6ed178
$06 \mathrm{f067aa72176fba}$	0a637dc5a2c898a6	113f9804bef90dae	1b710b35131c471b
28db77f523047d84	32caab7b40c72493	3c9ebe0a15c9bebc	431d67c49c100d4c
4 cc 5 d4becb3e42b6	597f299cfc657e2a	5fcb6fab3ad6fae	6c44198C4a475817

SHA-512 Round Function

$$
\begin{aligned}
T_{1} & =h+\operatorname{Ch}(e, f, g)+\left(\sum_{1}^{512} e\right)+W_{t}+K_{t} \\
T_{2} & =\left(\sum_{0}^{512} a\right)+\operatorname{Maj}(a, b, c) \\
h & =g \\
g & =f \\
f & =e \\
e & =d+T_{1} \\
d & =c \\
c & =b \\
b & =a \\
a & =T_{1}+T_{2}
\end{aligned}
$$

where
$t \quad=$ step number; $0 \leq t \leq 79$
$\mathrm{Ch}(e, f, g)=(e \mathrm{AND} f) \oplus(\mathrm{NOT} e \mathrm{AND} g)$ the conditional function: If e then f else g
$\operatorname{Maj}(a, b, c)=(a$ AND $b) \oplus(a$ AND $c) \oplus(b$ AND $c)$
the function is true only of the majority (two or three) of the arguments are true
$\left(\sum_{0}^{512} a\right)=\operatorname{ROTR}^{28}(a) \oplus \operatorname{ROTR}^{34}(a) \oplus \operatorname{ROTR}^{39}(a)$
$\left(\sum_{1}^{512} e\right)=\operatorname{ROTR}^{14}(e) \oplus \operatorname{ROTR}^{18}(e) \oplus \operatorname{ROTR}^{41}(e)$
ROTR $^{n}(x)=$ circular right shift (rotation) of the 64-bit argument x by n bits

