

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

TWO DIMENSIONAL RANDOM VARIABLES

Ū

Definition: Let S be the sample space of a random experiment. Let X and Y be two random Variables defined on S. Then the pair (X, Y) is called a two-dimensional random Variable or a bivariate random Variable.

Types of Two-dimensional Tandom Variables:

- 1. Discrete random Variable
- 2. Continuous random Variable,

1. Discrete random Variable:

If the possible Values of (x,y) are finite, then (x,y) is called a two-dimensional discrete random Variable and it can be represented by (x_i, y_j) where $i=1,2,\ldots n$ and $j=1,2,\ldots m$

Joint Probability Distribution of (X,Y):

Let (x,y) be a two-dimensional discrete random Variable. Let $P(x=x; | y=y_j) = P_{ij} \cdot P_{ij}$ is called the joint Probability distribution of (x,y) if the following conditions are satisfied:

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

KOBLEMS :

If the joint Pdf of (x, y) is given by P(x,y) = k(2x+3y), x = 0,1,2; y = 1,2,3. Find all the marginal probability distribution. Also find the Probability distribution of (x+y) and P(x+y>3).

Solution:

Given:
$$p(x,y) = K(2x+3y)$$

 $p(0,1) = K(0+3) = 3K$
 $p(0,a) = K(0+6) = 6K$
 $p(0,3) = K(0+9) = 9K$
 $p(1,1) = K(2+3) = 5K$
 $p(1,2) = K(2+6) = 8K$
 $p(1,3) = K(2+9) = 11K$
 $p(2,1) = K(4+3) = 7K$
 $p(2,2) = K(4+6) = 10K$
 $p(2,3) = K(4+9) = 13K$

The marginal distributions are given in the table:

U			-	1
X	0	1	۽	<u>Σ</u> þ(α,y)
1	3 <i>k</i>	5 K	7 K	15 K
2	6 K	8 K	ID K	24 K
3	9 <i>K</i>	II K	13 K	33 K
≥ þ(χ,y) y	18 K	d4 K	30 K	7ak

Scanned by CamScanner

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

$$\frac{5}{y} \sum_{x} p(x,y) = 1$$

$$\frac{7}{4} K = 1$$

$$\frac{K = \frac{1}{7}}{7}$$

Y) has

Marginal distribution of x and y:

$$y: 1 2 3$$
 $p(y): \frac{15}{72} \frac{24}{72} \frac{33}{72}$

= x i

Probability distribution of X+y:

in of

$$P(x+y=1) = p(0,1) = 3k = \frac{3}{72}$$

$$P(X+Y=2) = P(1,1) + P(0,2) = 5k+6k = 11k = \frac{11}{72} = \frac{3}{2}$$

$$P(x+y=3) = p(2,1) + p(1,2) + p(0,3)$$

$$P(x+y=4) = p(1,3) + p(2,2) = 11k + 10k = 21k = 21 = 72$$

$$P(x+y=5) = p(2/3) = 13 K = 13$$

$$\frac{P(x+y>3):}{P(x+y>3) = P(x+y=4) + P(x+y=5) = 21 + 13 = 34}$$

Scanned by CamScanner