

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

CORRELATION CO-EFFICIENTS:

Let x and y be given soundom vouiables The correlation coefficient is denoted by say or Pay and defined as

$$P_{xy} = r^{2} ay = \frac{\text{cov}(x,y)}{\nabla x \cdot \nabla y} = \frac{\text{cov}(x,y)}{\sqrt{\text{var}(x)} \sqrt{\text{var}(y)}}$$

Discrete Random Variable Continuous Random Variable

$$\nabla_n = \sqrt{\frac{2n^2}{n} - (\frac{2n}{n})^2}$$

$$\sigma_n = \sqrt{E(n^2) - [E(n)]^2}$$

$$\nabla y = \sqrt{\frac{\xi y^2}{2} - (\frac{\xi y}{2})^2}$$

Note: Cov (2, y) = 0, If x & y are independent (unweelated)

) Find the correlation coefficient between the marks obtained by 10 students in physics & chemistry

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

4-	_
0	n

				PORTELIGIES.
ox (phy)	y (chem)	91 ²	y2	ay
65	60	4225	3600	3900
45	60	2025	3600	2700
40	55	1600	3025	2 200
<i>55</i>	70	3025	4900	3850
60	80	3600	6400	4800
50	40	2500	1600	2000
80	85	6400	7225	6800
30	50	900	2500	1500
70	70	4900	4900	4900
65	80	4225	8400	5200
£n: 560 E	y: 650 a	≦n²:33400	Zeg: 44150	Eny: 37850
된 56 목	· ·		8400 X 0	2ny:3985
Now Cov	(x1y) =	Eny -	Sm. Sy	(AS) - 21.5
و مرده اه اه	3 + 10 2 0	3785 -	56 × 65	= 145

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

$$\nabla_{n} = \sqrt{\frac{2}{n}^{2}} - (\frac{2}{n})^{2} = \sqrt{3340 - (.55)^{2}} = \sqrt{204} = 14.28$$

$$\nabla_{y} = \sqrt{\frac{2}{4}} - (\frac{2}{5})^{2} = \sqrt{4415 - (.55)^{2}} = \sqrt{190} = .13.78$$

$$\frac{14.5}{14.28 \times 13.78}$$

= 0.7368

JPDF og Random Variable x & y is $f(x,y) = \int_{0}^{\infty} 2^{-n-y} \cdot 0 \le n \le 1$ find correlation coefficient between x & y: 0, otherwi

where
$$(\text{ov}(x,y) = \text{E}(xy) - \text{E}(xy) - \text{E}(xy))^2$$

$$\nabla x = \sqrt{\text{E}(x^2) - (\text{E}(x))^2}$$

$$\nabla y = \sqrt{\text{E}(y^2) - (\text{E}(y))^2}$$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

Now
$$E(x) = \int_{0}^{1} \int_{0}^{1} x (a-n-y) dn dy$$

$$= \int_{0}^{1} \frac{a n^{2}}{a^{2}} - \frac{a^{3}}{a^{2}} - \frac{y n^{2}}{a^{2}} \int_{0}^{1} dy$$

$$= \int_{0}^{1} (1 - \frac{1}{3} - \frac{y}{a}) dy$$

$$= y - \frac{y}{3} - \frac{y^{2}}{4} \int_{0}^{1} = 1 - \frac{1}{3} - \frac{1}{4} = \frac{5}{12}$$

$$\therefore E(x) = \frac{5}{12}$$

$$E(x^{2}) = \int_{0}^{1} \frac{1}{n^{2}} (2-n-y) dn dy$$

$$= \int_{0}^{1} \frac{2n^{3}}{3} - \frac{n^{4}}{4} - \frac{yn^{3}}{3} \int_{0}^{1} dy$$

$$= \int_{0}^{1} (\frac{2}{3} - \frac{1}{4} - \frac{y}{3}) dy$$

$$= \frac{2y}{3} - \frac{1}{4}y - \frac{y^{2}}{6} \int_{0}^{1} = \frac{2}{3} - \frac{1}{4} - \frac{1}{6} = \frac{3}{12} = \frac{1}{14}$$

$$\therefore E(x^{2}) = \frac{1}{4}y$$

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

$$E(y) = \int \int y (2-n-y) \, dy \, dx$$

$$= \int 2y^2 - ny^2 - \frac{y^3}{3} \int dx$$

$$= \int (1 - \frac{\pi}{2} - \frac{1}{3}) \, dx$$

$$= \pi - \frac{n^2}{4} - \frac{\pi}{3} \int = 1 - \frac{1}{4} - \frac{1}{3} = 5/12$$

$$E(y) = 5/12$$

$$E(y^{2}) = \int_{0}^{1} y^{2} (2 - x - y) dy dn$$

$$= \int_{0}^{1} \frac{2y^{3}}{3} - \frac{2y^{3}}{3} - \frac{y^{4}}{11} \int_{0}^{1} dn$$

$$= \int_{0}^{1} \left[\frac{3}{3} - \frac{2x}{3} - \frac{1}{14} \right] dn$$

$$= \frac{3}{3}x - \frac{2x^{2}}{6} - \frac{2x}{4} \int_{0}^{1} = \frac{3}{3} - \frac{1}{6} - \frac{1}{4} = \frac{3}{12} = \frac{3}{4}$$

$$\therefore E(y^{2}) = \frac{1}{4}$$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

$$E(xy) = \int_{0}^{1} \int_{0}^{1} xy (2-x-y) dxdy$$

$$= \int_{0}^{1} \frac{1}{2} y \frac{1}{2} - y \frac{1}{2} \frac{1}{2} - y \frac{1}{2} \frac{1}{2} \frac{1}{2} dy$$

$$= \int_{0}^{1} \left[y - \frac{y}{3} - \frac{y^{2}}{2} \right] dy$$

$$= \int_{0}^{1} \left[y - \frac{y}{3} - \frac{y^{2}}{2} \right] dy$$

$$= \frac{y^{2}}{3} - \frac{y^{2}}{6} - \frac{y^{3}}{6} = \frac{1}{3} - \frac{1}{6} - \frac{1}{6} = \frac{1}{6}$$

$$E(xy) = \frac{1}{6}$$

$$E(xy) = \frac{1}{6}$$

Now
$$Cov(N,y) = E(Ny) - E(Ny) \cdot E(y)$$

$$= \frac{1}{6} - \frac{5}{12} \cdot \frac{5}{12}$$

$$= -\frac{1}{144}$$

$$T_N = \sqrt{E(N^2) - (E(N))^2}$$

$$= \sqrt{\frac{11}{144}}$$

$$T_Y = \sqrt{E(y^2) - (E(y))^2}$$

$$= \sqrt{\frac{11}{144}}$$

$$P_{NY} = \sqrt{\frac{5}{12}} \cdot \frac{5}{12}$$

$$= \sqrt{\frac{11}{144}}$$

$$P_{NY} = \sqrt{\frac{5}{12}} \cdot \frac{5}{12}$$

$$= -\frac{1}{144}$$

$$= -\frac{1$$