

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

DISRETE RANDOM VARIABLES

PROBLEMS: [DISCRETE RANDOM VARIABLE] (i) From the following table for bovariate distribution of (x, y) find (i) $p(x \le 1)$; (ii) $p(y \le 3)$; (iii) $p(x \le 1, y \le 3)$ (iv) p(x=1/y=3); (v) p(y=3/x=1); (vi) p(x+y=4) (vii) The Marginal distribution of x or Marginal PMF of x (Viii) The Marginal distribution of y or Marginal prof of y (ix) The conditional distribution of x -yiven y=2 (x) Examine x and y are independent. X\Y->1 2 3 4 5 6 0 0 132 2/32 2/32 3/32 0 1 416 416 48 48 48 48 2 432 432 464 464 0 2/64

Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

5 3 3/32 432 432 132 0 0 b 48 18 48 46 416 18 L 2/64 164 Ô 2 130 1/30 164 Soln! P(x=n 5 3 4 Э P(2.1) 0 ð 132 b pfro7 107 p(x=1) Y16 48 Χь 1 Yg 48 820 1/32 2 P(x=2) 164 P(Y=6) p(4:2) P(y=4) P(Y=1) P(Y:3) 14/64 РY 3/32 3/30 16/64 6/64 1/64 6/64

(i)
$$P(x \le 1) = P(x=0) + P(x=1) = 8/32 + 20/32 = 2.8/32$$

(ii) $P(y \le 3) = P(y=1) + P(y=2) + P(y=3) = 6/64 + 6/64 + 11/64 = 2.3/64$

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

(iii) $p(x \le 1, y \le 3) = p(0,1) + p(0,2) + p(0,3) + p(1,1) + p(1,2) + p(1,3)$ 0,1 ; 1,2,3
$= 0 + 0 + \frac{1}{32} + \frac{1}{16} + \frac{1}{16} + \frac{1}{8}$
$= \frac{1+2+2+4}{32} = \frac{9}{32}$
(iv) $p(x \le 1/y \le 3) = p(x \le 1, y \le 3) = \frac{9/32}{28/64} = \frac{18}{28}$
$ (v) p(y \leq 3 \) x \leq 1) = \frac{p(x \leq 1, y \leq 3)}{p(x \leq 1)} = \frac{q/32}{28/32} = q/28 $
(vi) $p(x+y \le 4) = p(0,1) + p(0,2) + p(0,3) + p(0,4) + p(1,1) + p(1,2) + p(1,3) + p(2,1) + p(2,2)$ = $0 + 0 + \frac{y_{32}}{32} + \frac{y_{16}}{16} + \frac{y_{16}}{16} + \frac{y_{32}}{32} + \frac{y_{32}}{32} + \frac{y_{16}}{32} + \frac{y_{16}}{32} + \frac{y_{32}}{32} + \frac{y_{32}}{32} + \frac{y_{32}}{32} + \frac{y_{33}}{32} +$
$= \frac{13}{32}$

19MAT204 – PROBABILITY & STATISTICS

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

(vii) Marginal distribution of x : p(x=x) ×: 0 , 2 P(x=x): 8/32 20/32 4/32 viii) Marginal distribution of Y: p(y=y) Y: 1 2 3 4 5 6 P(Y=y): 6/64 6/64 11/64 13/64 10/64 16/64 $(ix) \ p(x \neq y = 2) = p(x = \pi i / y = 2) \ \pi_i \to i = 0, 1, 2, \dots$ Now $p(x=0/y=2) = \frac{p(x=0, y=2)}{p(y=2)} = \frac{0}{6/64} = 0$ $p(x=1/y=2) = \frac{p(x=1, y=2)}{p(y=2)} = \frac{y_{16}}{b_{164}} = \frac{a_{13}}{b_{164}}$ $p(x=2/y=2) = p(x=2, y=2) = \frac{y_{32}}{6/64} = \frac{y_3}{3}$

(x) Are x and y are independent: p[x=i].p[y=j] = p[i,j]. Now p(0,1) = p(x=0).p(y=1) 0 \$ \$132 x \$1/32 , Not independent

19MAT204 – PROBABILITY & STATISTICS

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

(2) The first probability mass function of (x, y) is given by p(x,y) = k(ax + 3y), x = 0, 1, 2; y = 1, 3, 3. Find all the marginal & conditional probability distributions. Also find the probability distribution of $(x+y) \ge p(x+y>3)$ Seln: $x|y \rightarrow 1 = 2 = 3$ y = 3k = 6k = 9h 1 = 5k = 8k = 11k 2 = 7k = 10h = 13k $\leq 2^{\circ} p(x_i, y_i) = 1$ $\Rightarrow 3k + 6k + 9k + 5k + 8k + 11k + 7k + 10h + 13h = 1$ 7a = 1k = 1/70

19MAT204 - PROBABILITY & STATISTICS

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

$$\frac{Seln}{4}$$

$$\frac{x}{1}y \rightarrow 1 \quad 2 \quad 3$$

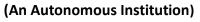
$$\frac{y}{6} \quad 3k \quad 6k \quad 9k$$

$$1 \quad 5k \quad 8k \quad 1k$$

$$2 \quad 7k \quad 10k \quad 13k$$

$$\frac{s}{12} \frac{s}{j^{2}} \quad p(\pi_{i}, y_{j}) = 1$$

$$\Rightarrow 3k + 6k + 9k + 5k + 8k + 11k + 7k + 10k + 13k = 1$$


$$7a \quad k = 1$$

$$7a \quad k = 1$$

$$K = \frac{1}{7} + \frac{1}$$

19MAT204 – PROBABILITY & STATISTICS

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

Marginal distribution of y:

$$\gamma : 1 = a = 3$$

 $p(y=y): 15T_{12} = a_{1}y_{12} = 33/12$
Condition probability: $p(x/y)$
 $p(x=ai/y=y_{1}) : x_{i} \rightarrow i = 0, i, 2 : y_{j} \rightarrow j = 1, 2, 3$
Now $p(x=0/y=1) = -\frac{p(x=0, y=1)}{p(y=1)} = 345$
 $p(x=1/y=1) = -\frac{p(x=0, y=1)}{p(y=1)} = 5/15$
 $p(x=a/y=1) = -\frac{p(x=2, y=1)}{p(y=1)} = 7/15$
 $p(x=0/y=a) = -\frac{p(x=0, y=2)}{p(y=a)} = 6/24$
 $p(x=0/y=a) = -\frac{p(x=0, y=2)}{p(y=a)} = 8/24$
 $p(x=0/y=3) = -\frac{p(x=0, y=3)}{p(y=3)} = 19/34$
 $p(x=0/y=3) = -\frac{p(x=0, y=3)}{p(y=3)} = 9/33$

19MAT204 – PROBABILITY & STATISTICS

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT - III TWO DIMENSIONAL RANDOM VARIABLES

$$p(x=1/y=3) = \frac{p(x=1, y=3)}{p(y=3)} = \frac{11}{33}$$

$$p(x=a/y=3) = \frac{p(x=2, y=3)}{p(y=3)} = \frac{13}{33}$$
Conditional probability of $y/x : p(y/x)$

$$p(y=y_j/x=n_i) : n_i \rightarrow \vec{n} = 0, l_2 = y_j \rightarrow j = 1, 2, 3$$
Nous $p(y=1/x=0) = \frac{p(y=2, x=0)}{p(x=0)} = \frac{3}{18}$

$$p(y=2/x=1) = \frac{p(y=3, x=0)}{p(x=1)} = \frac{6}{18}$$

$$p(y=3/x=0) = \frac{p(y=3, x=0)}{p(x=1)} = \frac{9}{18}$$

$$p(y=3/x=1) = \frac{p(y=3, x=0)}{p(x=1)} = \frac{9}{18}$$

$$p(y=3/x=1) = \frac{p(y=3, x=0)}{p(x=1)} = \frac{9}{12}$$

$$p(y=3/x=1) = \frac{p(y=3, x=1)}{p(x=1)} = \frac{11}{24}$$

$$p(y=3/x=1) = \frac{p(y=3, x=1)}{p(x=1)} = \frac{11}{24}$$

$$p(y=3/x=2) = \frac{p(y=3, x=2)}{p(x=2)} = \frac{11}{30}$$

$$p(y=3/x=2) = \frac{p(y=3, x=2)}{p(x=2)} = \frac{10}{30}$$

$$p(y=3/x=2) = \frac{p(y=3, x=2)}{p(x=2)} = \frac{13}{30}$$

19MAT204 – PROBABILITY & STATISTICS

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT – III TWO DIMENSIONAL RANDOM VARIABLES

probability	distribution of x+y:
x+y	p(x+y)
1	p(0,1): 3/72
ঽ	p(0,2)+p(1,1): 5/72+6/72: 11/72
3	p(0,3)+p(1,2)+p(2,1)=9/42+8/42+7/72:27/72
4	p (1,3)+p(2,2) : 10/-12+11/-12 + 21/-12
5	p(2,3) 13/72
P [X4Y >3]	= P[x+y=4] + P[x+y=5]
	= 21/72 + 13/72

= 34/72

19MAT204 – PROBABILITY & STATISTICS