Boats and Streams

Q 1. A person can swim in water with a speed of $13 \mathrm{~km} / \mathrm{hr}$ in still water. If the speed of the stream is $4 \mathrm{~km} / \mathrm{hr}$, what will be the time taken by the person to go 68 km downstream?

1. 2.5 hours
2. 3 hours
3. 4 hours
4. 3.5 hours
5. 4.5 hours

Answer: (3) 4 hours

Solution:

Downstream Speed $=(13+4) \mathrm{km} / \mathrm{hr}=17 \mathrm{~km} / \mathrm{hr}$
To travel 68 km downstream.
Time taken $=68 / 17=4$ hours
Q 2. In one hour, a boat goes $13 \mathrm{~km} / \mathrm{hr}$ in the direction of the stream and 7 $\mathrm{km} / \mathrm{hr}$ against the direction of the stream. What will be the speed of the boat in still water?

1. $8 \mathrm{~km} / \mathrm{hr}$
2. $10 \mathrm{~km} / \mathrm{hr}$
3. $14 \mathrm{~km} / \mathrm{hr}$
4. $6 \mathrm{~km} / \mathrm{hr}$
5. Cannot Be Determined

Answer: (2) 10 km/hr

Solution:

According to the formula,
Speed of a boat in still water $=1 / 2($ Downstream Speed + Upstream Speed $)$
Speed of boat in still water $=1 / 2(13+7)=1 / 2 \times 20=10 \mathrm{~km} / \mathrm{hr}$
Q 3. A woman can row upstream at $16 \mathrm{~km} / \mathrm{hr}$ and downstream at $26 \mathrm{~km} / \mathrm{hr}$. What is the speed of the stream?

1. $5 \mathrm{~km} / \mathrm{hr}$
2. $2 \mathrm{~km} / \mathrm{hr}$
3. $4.5 \mathrm{~km} / \mathrm{hr}$
4. $21 \mathrm{~km} / \mathrm{hr}$
5. $12 \mathrm{~km} / \mathrm{hr}$

Answer: (1) 5km/hr
Solution:
According to the formula,

Speed of the stream $=1 / 2($ Downstream Speed - Upstream Speed $)$
Speed of the stream $=1 / 2(26-16)=1 / 2 \times 10=5 \mathrm{~km} / \mathrm{hr}$
Q 4. A speedboat, whose speed in $15 \mathrm{~km} / \mathrm{hr}$ in still water goes 30 km downstream and comes back in a total of 4 hours 30 minutes. What is the speed of the stream in $\mathrm{km} / \mathrm{hr}$?

1. $2.5 \mathrm{~km} / \mathrm{hr}$
2. $3.5 \mathrm{~km} / \mathrm{hr}$
3. $4 \mathrm{~km} / \mathrm{hr}$
4. $5 \mathrm{~km} / \mathrm{hr}$
5. $3.25 \mathrm{~km} / \mathrm{hr}$

Answer: (4) 5 km/hr

Solution:

Let the speed of the stream be $\mathrm{xkm} / \mathrm{hr}$
Upstream Speed $=15+x$
Downstream Speed $=15-x$
So, $\{30 /(15+x)\}+\{30 /(15-x)\}=41 / 2(4$ hours 30 minutes)
$\Rightarrow\{900 /(225-x 2)\}=9 / 2$
$\Rightarrow 9 \mathrm{x}^{2}=225$
$\Rightarrow x^{2}=25$
$\Rightarrow \mathrm{x}=5$
Q 5. A boat is moving 2 km against the current of the stream in 1 hour and moves 1 km in the direction of the current in 10 minutes. How long will it take the boat to go 5 km in stationary water?

1. 1 hr 20 minutes
2. 1 hr 30 minutes
3. 1 hr 15 minutes
4. 30 minutes
5. 45 minutes

Answer: (3) 1 hr 15 minutes

Solution:
Downstream $=(1 / 10 \times 60)=6 \mathrm{~km} / \mathrm{hr}$
Upstream $=2 \mathrm{~km} / \mathrm{hr}$
Speed in still water $=1 / 2(6+2)=4 \mathrm{~km} / \mathrm{hr}$
So, the time is taken by the boat to go 5 km in stationary water $=5 / 4 \mathrm{hrs}=$ $11 / 4 \mathrm{hrs}=1 \mathrm{hr} 15$ minutes

