
SNS COLLEGE OF TECHNOLOGY
COIMBATORE-35

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITE305 – BIG DATA ANALYTICS

UNIT II: INTRODUCTION TO TECHNOLOGY LANDSCAPE

Topic 6 and 7: Processing Data with Hadoop - Managing Resources and Applications
with Hadoop YARN

Building Blocks of Hadoop

1. HDFS (The storage layer)

As the name suggests, Hadoop Distributed File System is the storage layer of Hadoop and

is responsible for storing the data in a distributed environment (master and slave

configuration). It splits the data into several blocks of data and stores them across different

data nodes. These data blocks are also replicated across different data nodes to prevent loss

of data when one of the nodes goes down.

It has two main processes running for processing of the data: –

a. NameNode

 It is running on the master machine. It saves the locations of all the files stored in the file

system and tracks where the data resides across the cluster i.e. it stores the metadata of the

files. When the client applications want to make certain operations on the data, it interacts

with the NameNode. When the NameNode receives the request, it responds by returning a

list of Data Node servers where the required data resides.

b. DataNode

This process runs on every slave machine. One of its functionalities is to store each HDFS

data block in a separate file in its local file system. In other words, it contains the actual data

in form of blocks. It sends heartbeat signals periodically and waits for the request from the

NameNode to access the data.

2. MapReduce (The processing layer)

It is a programming technique based on Java that is used on top of the Hadoop framework

for faster processing of huge quantities of data. It processes this huge data in a distributed

environment using many Data Nodes which enables parallel processing and faster execution

of operations in a fault-tolerant way.

A MapReduce job splits the data set into multiple chunks of data which are further converted

into key-value pairs in order to be processed by the mappers. The raw format of the data

may not be suitable for processing. Thus, the input data compatible with the map phase is

generated using the InputSplit function and RecordReader.

InputSplit is the logical representation of the data which is to be processed by an individual

mapper. RecordReader converts these splits into records which take the form of key-value

pairs. It basically converts the byte-oriented representation of the input into a record-

oriented representation.

These records are then fed to the mappers for further processing the data. MapReduce jobs

primarily consist of three phases namely the Map phase, the Shuffle phase, and the Reduce

phase.

a. Map Phase

It is the first phase in the processing of the data. The main task in the map phase is to process

each input from the RecordReader and convert it into intermediate tuples (key-value pairs).

This intermediate output is stored in the local disk by the mappers.

The values of these key-value pairs can differ from the ones received as input from the

RecordReader. The map phase can also contain combiners which are also called as local

reducers. They perform aggregations on the data but only within the scope of one mapper.

As the computations are performed across different data nodes, it is essential that all the

values associated with the same key are merged together into one reducer. This task is

performed by the partitioner. It performs a hash function over these key-value pairs to merge

them together.

It also ensures that all the tasks are partitioned evenly to the reducers. Partitioners generally

come into the picture when we are working with more than one reducer.

b. Shuffle and Sort Phase

This phase transfers the intermediate output obtained from the mappers to the reducers. This

process is called as shuffling. The output from the mappers is also sorted before transferring

it to the reducers. The sorting is done on the basis of the keys in the key-value pairs. It helps

the reducers to perform the computations on the data even before the entire data is received

and eventually helps in reducing the time required for computations.

As the keys are sorted, whenever the reducer gets a different key as the input it starts to

perform the reduce tasks on the previously received data.

c. Reduce Phase

The output of the map phase serves as an input to the reduce phase. It takes these key-value

pairs and applies the reduce function on them to produce the desired result. The keys and

the values associated with the key are passed on to the reduce function to perform certain

operations.

We can filter the data or combine it to obtain the aggregated output. Post the execution of

the reduce function, it can create zero or more key-value pairs. This result is written back in

the Hadoop Distributed File System.

3. YARN (The management layer)

Yet Another Resource Navigator is the resource managing component of Hadoop. There are

background processes running at each node (Node Manager on the slave machines and

Resource Manager on the master node) that communicate with each other for the allocation

of resources. The Resource Manager is the centrepiece of the YARN layer which manages

resources among all the applications and passes on the requests to the Node Manager.

The Node Manager monitors the resource utilization like memory, CPU, and disk of the

machine and conveys the same to the Resource Manager. It is installed on every Data Node

and is responsible for executing the tasks on the Data Nodes.

Map Reduce daemons

How does map reduce works?

Map reduce example

Managing Resources and Applications with Hadoop YARN

YARN (Yet Another Resource Negotiator) has been introduced to Hadoop with version 2.0 and

solves a few issues with the resources scheduling of MapReduce in version 1.0. In order to

understand the benefits of YARN, we have to review how resource scheduling worked in

version 1.0.

A MapReduce job is split by the framework into tasks (Map tasks, Reducer tasks) and each

task is run on of the DataNode machines on the cluster. For the execution of tasks, each

DataNode machine provided a predefined number of slots (map slots, reducers slots). The

JobTracker was responsible for the reservation of execution slots for the different tasks of a job

and monitored their execution. If the execution failed, it reserved another slot and re-started

the task. It also cleaned up temporary resources and make the reserved slot available to other

tasks. The fact that there was only one JobTracker instance in Hadoop 1.0 led to the problem

that the whole MapReduce execution could fail, if the the JobTracker fails (single point of

failure). Beyond that, having only one instance of the JobTracker limits scalability (for very

large clusters with thousands of nodes). The concept of predefined map and reduce slots also

caused resource problems in case all map slots are used while reduce slots are still available

and vice versa. In general it was not possible to reuse the MapReduce infrastructure for other

types of computation like real-time jobs. While MapReduce is a batch framework, applications

that want to process large data sets stored in HDFS and immediately inform the user about

results cannot be implemented with it. Beneath the fact that MapReduce 1.0 did not offer

realtime provision of computation results, all other types of applications that want to perform

computations on the HDFS data had to be implemented as Map and Reduce jobs, which was

not always possible. Hence Hadoop 2.0 introduced YARN as resource manager, which no

longer uses slots to manage resources. Instead nodes have "resources" (like memory and CPU

cores) which can be allocated by applications on a per request basis. This way MapReduce jobs

can run together with non-MapReduce jobs in the same cluster. The heart of YARN is the

Resource Manager (RM) which runs on the master node and acts as a global resource scheduler.

It also arbitrates resources between competing applications. In contrast to the Resource

Manager, the Node Managers (NM) run on slave nodes and communicates with the RM. The

NodeManager is responsible for creating containers in which the applications run, monitors

their CPU and memory usage and reports them to the RM. Each application has its own

ApplicationMaster (AM) which runs within a container and negotiates resources with the RM

and works with the NM to execute and monitor tasks. The MapReduce implementation of

Hadoop 2.0 therefore ships with an AM (named MRAppMaster) that requests containers for

the execution of the map tasks from the RM, receives the container IDs from the RM and then

executes the map tasks within the provided containers. Once the map tasks have finished, it

requests new containers for the execution of the reduce tasks and starts their execution on the

provided containers. If the execution of a task fails, it is restarted by the ApplicationMaster.

Should the ApplicationMaster fail, the RM will attempt to the restart the whole application (up

to two times per default). Therefore the ApplicationMaster can signal if it supports job recovery.

In this case the ApplicationMaster receives the previous state from the RM and can only restart

incomplete tasks. If a NodeManager fails, i.e the RM does not receive any heartbeats from it,

it is removed from the list of active nodes and all its tasks are treated as failed. In contrast

toversion 1.0 of Hadoop, the ResourceManager can be configured for High Availability.

