Euclidean Algorithm

The Euclidean algorithm is a way to find the greatest common divisor of two positive integers. GCD of two numbers is the largest number that divides both of them
The Algorithm
The Euclidean Algorithm for finding $\operatorname{GCD}(A, B)$ is as follows:

- If $A=0$ then $G C D(A, B)=B$, since the $G C D(0, B)=B$, and we can stop.
- If $B=0$ then $\operatorname{GCD}(A, B)=A$, since the $G C D(A, O)=A$, and we can stop.
- Write A in quotient remainder form ($A=B \cdot Q+R$)
- Find $G C D(B, R)$ using the Euclidean Algorithm since $G C D(A, B)=G C D(B, R)$

Example

- Find the GCD of 270 and 192
- $\mathrm{A}=270, \mathrm{~B}=192$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that 270/192
$=1$ with a remainder of 78 . We can write this as:
- $\mathrm{A}=\mathrm{B}^{*} \mathrm{Q}+\mathrm{R}$
- $270=192 * 1+78$
- Find GCD(192,78), since $\operatorname{GCD}(270,192)=\operatorname{GCD}(192,78)$
- $\mathrm{A}=192, \mathrm{~B}=78$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $192 / 78=$ 2 with a remainder of 36 . We can write this as:
- $\mathrm{A}=\mathrm{B} * \mathrm{Q}+\mathrm{R}$
- $192=78 * 2+36$
- Find GCD $(78,36)$,
- $A=78, B=36$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $78 / 36=2$ with a remainder of 6 . We can write this as:
- $78=36 * 2+6$
- Find GCD(36,6),
- $A=36, B=6$
- $\mathrm{A} \neq 0$
- $\mathrm{B} \neq 0$
- Use long division to find that $36 / 6=6$ with a remainder of 0 . We can write this as:
- $36=6 * 6+0$

Find $G C D(6,0)$,

- $A=6, B=0$
- $A \neq 0$
- $B=0, G C D(6,0)=6$
- So we have shown:
- $\operatorname{GCD}(270,192)=\operatorname{GCD}(192,78)=\operatorname{GCD}(78,36)=\operatorname{GCD}(36,6)=\operatorname{GCD}(6,0)=6$ $\operatorname{GCD}(270,192)=6$

Modular Arithmetic

The Modulus

- If \mathbf{a} is an integer and \mathbf{n} is a positive integer, we define $\mathbf{a} \bmod \mathbf{n}$ to be the remainder when \mathbf{a} is divided by \mathbf{n}. The integer \mathbf{n} is called the modulus.
- Modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value called modulus
- 1:00 and and 13:00 hours are the same($1=13 \bmod 12)$

Congruence

Integers that leave the same remainder when divided by the modulus m are somehow similar, however, not identical.
Such numbers are called "congruent".
For instance, 1 and 13 and 25 and 37 are congruent mod 12 since they all leave the same remainder when divided by 12 .
$\mathbf{a} \equiv \mathbf{b} \bmod \mathbf{m}$
$15 \equiv 3(\bmod 12)$
$23 \equiv 11(\bmod 12)$
$33 \equiv 3(\bmod 10)$
$23 \equiv 3(\bmod 10)$
$38 \equiv 2(\bmod 12) \mathrm{q}=3$
$38 \equiv 14(\bmod 12) q=2$

Computational Rules

- $((a \bmod m)+(b \bmod m)) \bmod m=(a+b) \bmod m$
- ((a $\bmod m)-(b \bmod m)) \bmod m=(a-b) \bmod m$
- $((a \bmod m)$ * $(b \bmod m)) \bmod m=(a * b) \bmod m$

Example

$[(15 \bmod 8)+(11 \bmod 8)] \bmod 8=(15+11) \bmod 8$
$(7+3) \bmod 8=26 \bmod 8$
$10 \bmod 8=26 \bmod 8$
$2=2$

Properties of Modular Arithmetic

Property	Expression
Commutative Laws	$(a+b) \bmod n=(b+a) \bmod n$ $(a \times b) \bmod n=(b \times a) \bmod n$
Associative Laws	$[(a+b)+c] \bmod n=[a+(b+c)] \bmod n$ $[(a \times b) \times c] \bmod n=[a \times(b \times c)] \bmod n$
Distributive Laws	$[a \times(b+c)] \bmod n=[(a \times b)+(a \times c)] \bmod n$
Identities	$(0+a) \bmod n=a \bmod n$ $(1 \times a) \bmod n=a \bmod n$
Additive Inverse	For each $a \in Z_{n}$, there exists $a^{\prime}-a^{\prime}$ such that $a+(-a) \equiv 0 \bmod n$

