

When your phone rings during a lecture, what will happen?

When you are studying then your cell phone rings – what will you do?

 When you finish talking on the phone then you will continue with

your study.

 When being interrupted, you will perform some pre-defined

action.

 Interrupt has priority – some interrupt is more important than the

others. For example, answering your phone is more important

Now your phone rings again and someone also knocking at your

door then what will you do?

Introduction
An interrupt is used to cause a temporary halt in the execution of

program.

The meaning of ‘interrupts’ is to break the sequence of operation.

While the Microprocessor is executing a program, an ‘interrupt’

breaks the normal sequence of execution of instructions, diverts its

execution to some other program called Interrupt Service Routine

(ISR).

After executing ISR, IRET returns the control back again to

the main program. Interrupt processing is an alternative to polling.

Need for Interrupt:

 Interrupts are particularly useful when interfacing I/O devices,

that provide or require data at relatively low data transfer rate.

Three types of interrupts sources are there:

1. An external signal applied to NMI or INTR input pin(hardware

interrupt)

2. Execution of Interrupt instruction(software interrupt)

3. Interrupt raised due to some error condition produced in 8086

instruction execution process. (Divide by zero, overflow errors

etc)

Sources of Interrupts:

8086 Interrupt Sources

An 8086 interrupt can come from any one of the following three sources:

1. An external signal applied to the non-maskable interrupt (NMI

17 pin) pin or to the interrupt (INTR 18 pin) pin. An interrupt

caused by a signal applied to one of these inputs is called

hardware interrupt.

2. The execution of the instruction INT n, where n is the interrupt

type that can take any value between 00H and FFH. This is called

software interrupt.

3. An error condition such as divide-by-0, which is produced in the

8086 by the execution of the DIV/IDIV instruction or the trap

interrupt.

How to get key typed in the keyboard or a keypad?

 Polling :-

The CPU executes a program that check for the available of
data, If a key is pressed then read the data, otherwise keep waiting
or looping!!!

 Interrupt:-

The CPU executes other program, as soon as a key is pressed,

the Keyboard generates an interrupt. The CPU will response to the

interrupt read the data. After that returns to the original program. So

by proper use of interrupt, the CPU can serve many devices at the

“same time”

Polling vs Interrupt

 The keyboard controller can hold only a single keystroke. Therefore, the

keyboard controller must be freed before the next keystroke arrives.

 The keystroke is passed to the CPU by putting it in the keyboard buffer. So, the

keyboard controller keeps on passing the keystroke input to the CPU,

But how does the CPU attend to it?

The CPU is not at the disposal of the keyboard controller; it is usually busy

doing several other operations. So, we need some mechanism to indicate to the

CPU that a keystroke has arrived. How is this done? There are two approaches to

making sure that the CPU pays attention:

 Polling-based

 Interrupt-based

Example: Polling Vs Interrupt

Keystroke causes interrupt

Figure 2: Polling-based interrupt handling

Polling Based System:-

 The CPU executes a program that check for the

available of data If a key is pressed then read the data,

otherwise keep waiting or looping!!!

Keystroke passed to the CPU

No keystroke for CPU

Interrupt-based approach

Interrupt-based systems

 The CPU executes other program, as soon as a key is
pressed, the Keyboard generates an interrupt. The CPU
will response to the interrupt – read the data. After
that returns to the original program. So by proper use
of interrupt, the CPU can serve many devices at the
“same time”

Example of interrupt

 How to control a robot that has sensors to

detect obstacles and makes a turn

Controlling a robot by using Polling &
Interrupt

 Interrupt

 Keeping moving until interrupted by the sensor

 Interrupt received then do pre-defined operation

 After finishing the interrupt service return to normal

operation i.e keep moving forward again

 Polling

 Move forward in a pre-defined unit

 Check sensor reading

 Do nothing if no obstacle or turn if obstacle detected

 Loop back and move forward again

Polling vs Interrupt Control of a robot

Move forward

Check sensor

Y

Stop or turn

Move forward

interrupt

N

obstacle

How would the processor work with

an Interrupt ?

How would the processor work with an Interrupt

Interrupts

Software Interrupts

INT n

Hardware

Interrupts

Maskable
Interrupts

Nonmaskable
Interrupts

The programmer
can choose to mask
specific interrupts
and re-enable them
later

The programmer cannot
control when a non maskable
interrupt is served

The processor has to stop
the main program to execute
the NMI Service Routine.

256 Types of
software Interrupts

INT 00 to INT FF

1. Executes the INT instruction

2. Interrupts the INT instruction during the assembly time

3. Moves the INT instruction to the Vector Table

 Vector Table occupies location 00000H to 0003FFh of the

program memory.

 It contains the code segment (CS) and Instruction Pointer (IP)

for each kind of interrupt.

Processing of Interrupt by the Processor

1. Pushes the content of the flag register onto the stack to preserve the status of

the interrupt (IF) and trap flags (TF), by decrementing the stack pointer (SP)

by 2

2. Disables the INTR interrupt by clearing IF in the flag register

3. Resets TF in the flag register, to disable the single step or trap interrupt

4. Pushes the content of the code segment (CS) register onto the stack by

decrementing SP by 2

5. Pushes the content of the instruction pointer (IP) onto the stack by

decrementing SP by 2

6. Performs an indirect far jump to the start of the interrupt service routine (ISR)

corresponding to the received interrupt.

If an interrupt has been requested, the 8086 Microprocessor processes it by

performing the following series of steps:

8086 Interrupt Processing

Steps involved in processing an interrupt instruction by the processor

Jumps to the Interrupt Vector Table

Takes the CS and IP in the Vector Table

Pushes the existing CS and IP on the Stack

Executes the Interrupt instructions

Loads the new CS and IP

Jumps to the Interrupt Service Routine

Comes back and continues the Main Program

Executes the Interrupt Service Routine

Interrupt

Push flags register

Clear IF and TF

Push CS and IP

Load CS and IP

Pop IP and CS

Pop flags register

Interrupt Service
Routine (ISR)

Interrupt program

:

:

:

:

:

:

IRET

Main Program

Processing of an Interrupt by the 8086

RESET as a Non-maskable Interrupts

Process sequence in the processor

Completes the current instruction that is in progress

Pushes the Flag Register values on to the Stack

Pushes the CS value and IP value of the return address
on to the stack

IP is loaded from contents of the word location 00008H

CS is loaded from contents of next word location 0000AH

Interrupt Flag and Trap Flag are reset to 0.

1
 K

B

CS

IP

Type 01H Interrupt
(Trap or Single step)

Type 02H Interrupt (NMI)

Type 03H Interrupt (Break Point)

Type 04H Interrupt (Over Flow)

Type 20H Interrupt (Available)

Type 21H Interrupt (Available)

Type 1FH Interrupt (Reserved)

Type FFH Interrupt (Available)

Type 05H Interrupt (Reserved)

Type 00H Interrupt

(Divide by Zero)

Dedicated Interrupts

(05)

Reserved Interrupts

(27)

Available Interrupts

(224)

CS

IP

003FFH

00084H

00080H

0007CH

00014H

00010H

0000CH

00008H

0004FH

0003FH

00002H

00001H

00000H

003FCH
IVT:-

Given a vector, where is the ISR address stored in memory ?

Offset = Type number X 4

Example:- INT 02h

Offset = 02 x 4 = 08
= 00008h

Type 0 or
INT 00 Interrupt

00000H 00001H

00002H 00003H

2 bytes

2 bytes

CS LSB MSB

CS LSB CS MSB

IP LSB IP MSB

256 Interrupts Of 8086 are Divided in To 3 Groups

1. Type 00 to Type 04 interrupts-
These are used for fixed operations and hence are called

dedicated interrupts

2. Type 05 to Type 31 interrupts
Not used by 8086,reserved for higher processors like 80286

80386 etc.

3. Type 32 to Type 255 interrupts
Available for user, called user defined interrupts these can be

H/W interrupts and activated through INTR line or can be S/W
interrupts.

Type – 0 :- Divide by Zero Error Interrupt

Quotient is large cant be fit in al/ax or divide by zero

Type –1:- Single step or Trap Interrupt

Used for executing the program in single step mode by setting

trap flag.

Type – 2:- Non-Maskable Interrupt

This interrupt is used for executing ISR of NMI pin (positive

edge signal), NMI can’t be masked by S/W.

Type – 3:- One-byte INT instruction interrupt

Used for providing break points in the program

Type – 4 Over flow Interrupt

Used to handle any overflow error after signed arithmetic.

BIOS Interrupt or Function Calls

 The BIOS (basic input/output system) is boot firmware, which is

designed to be the first program run by a PC when powered on.

 The initial function of the BIOS is to identify, test, and initialize

system devices such as the video display card, hard disk, floppy

disk, and other hardware.

 The BIOS prepares the machine for a known state, so that the

software stored on the compatible media can be loaded, executed,

and given control of the PC.

 BIOS function calls, also known as BIOS interrupts, are stored in

the system ROM and in the video BIOS ROM present in the PC.

 INT 21h is provided by DOS.
When MS-DOS is loaded into the computer, INT 21H can be

invoked to perform some extremely useful functions.
 These functions are commonly referred to as DOS INT 21H

function calls.
 Data input and output through the keyboard and monitor are the

most commonly used functions.

DOS interrupts

1. Display the message defined with variable DATA DB

‘Microprocessor,’$’

MOV AH,09 Option 9 to display string of data

MOV DX, OFFSET DATA DX= offset address of data

INT 21H Invoke the interrupt

2. Inputting a single character, with echo.

MOV AH, 01 Option 01 to input one character

INT 21H Invoke the interrupt

Below are two examples that use DOS interrupts.

1. Function call 01: Read the key board

Input parameter AH = 01 read a character from keyboard. Echo it on CRO

screen and return the ASCII code of the key pressed in AL output parameter:

AL = ASCII code of character

2. Function call 02h: Display on CRT screen

Input parameter: AH = 02

Dl = ASCII character to be displayed on CRT screen

3. Function call 03: Read character from com1

Input parameter: AH = 03h

Function: Reads data from com port

Output parameter: AL = ASCII code of character

4. Function call 04: Write character to com1

Input parameter: AH = 04h DL = ASCII code of character to be transmitted

Function: Writes data to com port

DOS (Disk Operating System) Interrupts

5. Function call 05: Write to Lpt1

Input parameter: AL = 05H

DL = ASCII code of character to be printed

Function: Print the character available in dl on printer attached to Lpt1

6. Function call 09: Display a character string

Input parameter: AH = 09, DS:DX= Address of character string

Function: Displays the characters available in the string to CRT till a $ symbol

7. Function call 0Ah: Buffered key board input

Input parameter: AH = 0Ah

DS:DX = Address of keyboard input buffer

Function: The ASCII codes of the characters received from keyboard are stored

in keyboard buffer from 3rd byte. 1st byte of buffer = size of buffer upto 255. It

receives the characters till specified no.Of characters are received or enter key

is presses which ever is earlier

INT 10H subroutines are burned into the ROM BIOS of the

8086 based and compatibles and are used to communicate with the

computer user screen video. Much of the manipulation of screen text

or graphics is done through INT 10H. Among them are changing the

color of characters or background, clearing screen, and changing the

locations of cursor. Below are two examples that use BIOS interrupts.

1. Clearing the screen:

MOV AX, 0600H ;scroll entire screen
MOV BH, 07 ;normal attribute
MOV CX, 0000 ;start at 00,00
MOV DX, 184FH ;end at 18, 4F
INT 10H ;invoke the interrupt

BIOS interrupt

BIOS (Basic Input/output System) INTERRUPTS

a) Function Call 00: Select Video Mode
Input Parameter: AL = Mode Number

AH = 00h
Function: It Changes The Display Mode And Clears The Screen

AL = 00 40 X 25 Black And White
AL = 04 320 X 200 Color
AL = 10h 640 X 350 X 16 Color

b) Function Call 03: Read Cursor Position
Input Parameter: AH = 03

BH = Page Number
Function: Reads Cursor Position On Screen
Output Parameters: CH = Starting Line

CL = Ending Line
DH = Current Row
DL = Current Column

C) Function Call 0E: Write Character On CRT Screen And Advance Cursor
Input Parameter: Ah = 0Eh

AH = ASCII Code Of The Character
BH = Page(text Mode)
BH = Color(graphics)

Function: Display Character Available In Al On Screen

INT 10H:Video Service Interrupt:-It Controls The Video Display

INT 11H:- Determine the type of equipment installed. Register AX should contain

FFFFH and instruction INT 11H to be executed. On return, register AX will

indicate the equipment's attached to computer

INT14H:- Control the serial communication port attached to the computer. Ah

should contain the function call

a) Function Call 00:initialize The Com Port

b) Function Call 01: Send A Character

c) Function Call 02:receive A Character

INT 16H:- Keyboard interrupt AH should contain the function call

a) Function call 00: Read keyboard character, It will return ASCII code of the

character

b) Function call 01: Get key board status

Other Interrupts:-

