X/'

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Coimbatore-35

Accredited by NBA - AICTE and Accredited by NAAC - UGC with A+ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ITT204 - MICROCONTROLLER AND EMBEDDED SYSTEMS

I YEAR/ IV SEMESTER

UNIT I ARCHITECTURE OF 8086 MICROPROCESSOR

TOPIC - INTERRUPTS

Interrupts/191TT204 MICROCONTROLLER AND EMBEDDED SYSTEMS /RAJA S AP/ECE/SNSCT



Intevuupts on |
5056 Micweprocessaon




When your phone rings during a lecture, what will happen?

» When you are studying then your cell phone rings - what will you do?

“* When you finish talking on the phone then you will continue with

your study.

» Now your phone rings again and someone also knocking at your

door then what will you do?

“* When being interrupted, you will perform some pre-defined

action.

% Interrupt has priority — some interrupt is more important than the

others. For example, answering your phone is more important



Intreduction = .

An interrupt is used to cause a temporary halt in the execution of

program.
The meaning of ‘interrupts’ is to break the sequence of operation.

While the Microprocessor is executing a program, an ‘interrupt’
breaks the normal sequence of execution of instructions, diverts its
execution to some other program called Interrupt Service Routine
(ISR).

After executing ISR, IRET returns the control back again to

the main program. Interrupt processing is an alternative to polling.



Need for Interrupt:—= i

/

Interrupts are particularly useful when interfacing 1/0 devices,

that provide or require data at relatively low data transfer rate.

Sources of Interrupts:

Three types of interrupts sources are there:

1. An external signal applied to NMI or INTR input pin( hardware
interrupt)

2. Execution of Interrupt instruction( software interrupt)

3. Interrupt raised due to some error condition produced in 8086
instruction execution process. (Divide by zero, overflow errors

etc)



8086 Interrupt Sources

-An 8086 interrupt can come from any one of the following three sources:

1. An external signal applied to the non-maskable interrupt (NMI
17 pin) pin or to the interrupt (INTR 18 pin) pin. An interrupt
caused by a signal applied to one of these inputs is called

hardware interrupt.

2. The execution of the instruction INT n, where n is the interrupt
type that can take any value between 00H and FFH. This is called

software interrupt.

3. An error condition such as divide-by-0, which is produced in the
8086 by the execution of the DIV/IDIV instruction or the trap

interrupt.



=

\\
/
How to get key typed in the keyboard or a keypad?
» Polling :-
The CPU executes a program that check for the available of

data, If a key is pressed then read the data, otherwise keep waiting
or looping!!!

» Interrupt:-

The CPU executes other program, as soon as a key is pressed,
the Keyboard generates an interrupt. The CPU will response to the
interrupt read the data. After that returns to the original program. So
by proper use of interrupt, the CPU can serve many devices at the

“same time”



Solling VS Intevuupt

U The keyboard controller can hold only a single keystroke. Therefore, the

.

keyboard controller must be freed before the next keystroke arrives.
L The keystroke is passed to the CPU by putting it in the keyboard buffer. So, the

keyboard controller keeps on passing the keystroke input to the CPU,
But how does the CPU attend to it?

The CPU is not at the disposal of the keyboard controller; it is usually busy

doing several other operations. So, we need some mechanism to indicate to the
CPU that a keystroke has arrived. How is this done? There are two approaches to

making sure that the CPU pays attention:

» Polling-based
» Interrupt-based



Keyboard

Keystroke causes interrupt



S—

_— \\
Polling Based System:-
_______________
] Keyboard : Do you have a

|
i Controller CPU
|

I
: Keystroke for me?

Figure 2: Polling-based interrupt handling

\/

¢ The CPU executes a program that check for the
available of data If a key is pressed then read the data,

otherwise keep waiting or looping!!!



R
: Keyboard i
' Controller ! -
! I

Keystroke passed to the CPU

- No @
! Controller -
3 I

No keystroke for CPU




Pay Attention!

(Interrupt)

e ——————— —— ——

Keyboard controller

Interrupt-based approach

\/

‘¢ The CPU executes other program, as soon as a key is
pressed, the Keyboard generates an interrupt. The CPU
will response to the interrupt - read the data. After
that returns to the original program. So by proper use
of interrupt, the CPU can serve many devices at the
“same time”



Example of interrupt

» How to control a robot that has sensors to

detect obstacles and makes a turn

Controlling a robot by using Polling &
Interrupt



Polling = —

—

> Move forward in a pre-defined unit
» Check sensor reading
> Do nothing if no obstacle or turn if obstacle detected

» Loop back and move forward again

Interrupt

» Keeping moving until interrupted by the sensor
> Interrupt received then do pre-defined operation

» After finishing the interrupt service return to normal

operation i.e keep moving forward again



olling vs Interrupt 1M

—

Stop o turn interrupt



Main Program

/

|
\

\

|
/



Main Program

Keyboard INEEEGEEE =0

Driver

KKeyboard




Main Program

V.

Keyboard InERRamEmE
Driver ERERESEEm 0
I L1111 Ml

\
KKeyboard
,




Main Program

Keyboard INEEEEEEE B8

Driver BEERREEeES
IRERREeEE CU
| - " 0

\
IKeyboard
,




This is called Polling.

Main Program

1
IKeyboard
,

IKeyboard




How would the processor work with an Interrupt

Main Program

IKeyboard
Driver

l<eyboard




Main Program

Interrupt Controller

I{eyboard

IKeyboard
Driver




Main Program

Interrupt Controller

Triggers the appropriate
Interrupt Service Routine (ISR)

IKeyboard

Driver
I<eyboard




Main Program
' i

\

Interrupt Controller

Triggers the appropriate
Intermupt Service Routine (ISR)

I
I
I
I
I
I
I
I
I
‘ INEEEEEEEE =8
/ 5EE DGR - ‘

-

IKeyboard

Driver
I<eyboard




Hardware Software Interrupts

Interrupts | INT n

I

Maskable
Interrupts

I

The programmer
can choose to mask
specific interrupts
and re-enable them

\later

A /

256 Types of
software Interrupts

Nonmaskable

| Interrupts |
> I o’ INT 00 to INT FF

The programmer cannot
control when a non maskable

| nterrupt is served

The processor has to stop
the main program to execute

the NMI Service Routine. ,
N,/




8086 CPU

T

GND [ 1 40 1 VCC
AD14 [ 2 39 [] AD15
AD13 [ 3 38 [ A16/S3
AD12 [ 4 37 [ A17/S4
AD11 [ 5 36 [] A18/S5
AD10 [ 6 35 ] A19/S6
ADS [] 7 34 [ BHE/S7
AD8 [ 8 33 [ MN/MX
AD7 [] 9 32 [ RD
Hardware Interrupts AD6 L[] 10 8086 31 [ ] R__ﬂfﬁ (HOLD)
ADs ] 11 CPU 30 [ RQ/GT1 (HLDA)
AD4 [ 12 29 [] TOCK (WR)
: AD3 [ 13 28 1 S2 (M/I0)
Maskable Interrupts Nc::}:l?jgf;me AD2 [ 14 27 [ E (DTIR)
AD1 [ 15 26 [1 S0 (DEN)
ADO L[] 18 25 1 QS0 (ALE)
NMI [ 17 24 [ Q@s1  (INTA)
INTR L[] 18 23 [ 1 TEST
cLk L[] 19 22 [ 1 READY
GND [ 20 21 ] RESET




8086 CPU

GND [] 1 40 [ 1 VCC
AD14 [] 2 39 [] AD15
AD13 [] 3 38 [] A16/S3
AD12 [ 4 37 [ A17/S4
AD11 [] 5 36 [] A18/S5
AD10 [ 6 35 1 A19/S6
AD9 [ 7 34 [] BHE/S7
AD8 [] 8 33 1 MN/MX
AD7 [ 9 32 [ RD
Hardware Interrupts AD6 L[] 10 8086  31[] Eafé—ﬁ) (HOLD)
AD5S ] 11 CPU 30 [ RQ/GTI1 (HLDA)
AD4 [ 12 29 1 TOCK (WR)
: AD3 [ 13 28 [1 S2 (M/10)
Maskable Interrupts Nor-Maskabie AD2 [] 14 271 §1 (DTIﬁ)
Interrupts — e
AD1 [ 15 26 [ 1 SO (DEN)
ADO [] 18 25 1 QS0 (ALE)
NMI [ 17 24 7] QS1  (INTA)
~INTR ] 18 23 [1 TEST
cLk [ 19 22 [ ] READY
GND [ 20 21 [] RESET




8086 CPU

GND C]1 401 VCC
AD14 [ 2 39 [] AD15
AD13 [ 3 38 [ A16/S3
AD12 [ 4 37 [ A17/S4
AD11 [ 5 36 [] A18/S5
AD10 [ 6 35 [ ] A19/S6
AD9 [ 7 34 [] BHE/S7
AD8 [] 8 33 [ MN/MX
AD7 [ 9 32 [ RD
Hardware Interrupts AD6 [] 10 8086  31[] @ﬁ(HOLD)
ADs ] 11 CPU 30 [ RQ/GT1 (HLDA)
AD4 [ 12 20 [] TOCK (WR)
AD3 [ 13 28 [1 S2 (M/IO)
Maskable Interrupts Non-Maskable AD2 [ 14 27 18 83 (DTIﬁ)
Interrupts f— G——
] 15 26 1 SO (DEN)
] 16 25 [ ] QS0 (ALE)
- NMI ] 17 24 [0 @s1  (INTA)
»INTR [ 18 23 [ ] TEST
cLk [ 19 22 [ ] READY
GND [ 20 21 ] RESET




Processing of Interrupt bv:.the Process
el AR eSSOr——

Executes the INT instruction
Interrupts the INT instruction during the assembly time
Moves the INT instruction to the Vector Table

Vector Table occupies location 00000H to 0003FFh of the

program memory.

[t contains the code segment (CS) and Instruction Pointer (IP)

for each kind of interrupt.



8wrrupt Proc% | /

If an interrupt has been requested, the 8086 Microprocessor processes it by

performing the following series of steps:

1. Pushes the content of the flag register onto the stack to preserve the status of
the interrupt (IF) and trap flags (TF), by decrementing the stack pointer (SP)
by 2

2. Disables the INTR interrupt by clearing IF in the flag register

3. Resets TF in the flag register, to disable the single step or trap interrupt

4. Pushes the content of the code segment (CS) register onto the stack by
decrementing SP by 2

5. Pushes the content of the instruction pointer (IP) onto the stack by
decrementing SP by 2

6. Performs an indirect far jump to the start of the interrupt service routine (ISR)

corresponding to the received interrupt.



0t 1nSt




Processingof an Inte

~

(/Iain P pograrD / Push flags register Interrupt Service

Clear IF and TF ~| Routine (ISR)

Push CS and IP
/ Load CS and IP '
| Interrupt program

Interrupt

Pop IP and CS

' Pop flags register |
\. / |

N IRET




8086

BESISIOF Processor

NMI

RESET as a Non-maskable Interrupts



8086
[’rocessor

NMI




rocess sequence in the p
/_\

Completes the current instruction that is in progress

y

Pushes the Flag Register values on to the Stack

y

Pushes the CS value and IP value of the return address
on to the stack

L

I[P is loaded from contents of the word location

L

CSisloaded from contents of next word location

L

Interrupt Flag and Trap Flag are reset to 0.



Main Program

NMI ISR
NMI_DRVR .

Assume this has
50 lines of code

IRET



Main Program ISR A
INT_DRVR_A .

Assume this has
50 lines of code

‘

— |RET




The processor pushes the Flag, the CS,
and the IP before executing the ISR.

Main Program ISRA
INT_DRVR_A .

Assume this has
50 lines of code

.

IRET




Main Program ISR A
INT_DRVR_A .

Assume this has
50 lines of code

|

IRET

Interrupt Return Instruction



Main Program

ISR A
INT_DRVR_A .

Assume this has
50 lines of code

|

— |RET




Main Program

ISR A
INT_DRVR_A

Assume this has
50 lines of code

|

IRET




The execution of the IRET instruction by the
processor pops the Flag Registers, IP, and CS.

Main Program ISR A
INT_DRVR_A .

Assume this has
50 lines of code

.

—— |RET




Non-MasRkRable Interrupts

Used during power fFailure

Used during critical
response times

Used during non-recoverable
hardware errors

Used as Watchdog Interrupt

Used during Memory Parity errors



Software Interrupts

Used by Operating Systems to provide
hooRs into various functions

Used as a communication mechanism
between different parts of a program




Hardware Interrupts

Used to handle external hardware
peripherals, such as Reyboards,
mouse, hard disRs, floppy disRs,
DVD drives, and printers

Keyboard Floppy disk DVD drive




Hardware Interrupts

Used to handle external hardware
peripherals, such as Reyboards,
mouse, hard disRs, floppy disRs,
DVD drives, and printers

Interrupts are expensive in terms
of time and processing power.



Hardware Interrupts

Used to handle external hardware
peripherals, such as Reyboards,
mouse, hard disRks, floppy disRks,
DVD drives, and printers

Without Interrupts, the systems
are very simple.



Hardware Interrupts

Used to handle external hardware

peripherals, such as Reyboards,
mouse, hard disRs, floppy disRs,
DVD drives, and printers

All microprocessor architectures have
In-built interrupt service capability.



X
N
&
,@/
\’Q
)
S~
-
CS R
[P ~—_|

003FFH
003FCH

Type FFH Interrupt (Available)

00084H

Type 21H Interrupt (Available)

00080H

Type 20H Interrupt (Available)

0007CH

Type 1FH Interrupt (Reserved)

J\

+

=~ 3

00014H

Type O5H Interrupt (Reserved)

\

00010H

Type 04H Interrupt (Over Flow)

oooocH] Type 03H Interrupt (Break Point)

00008H

Type 02H Interrupt (NMI)

0004FH

Type 01H Interrupt
(Trap or Single step)

0003FH
~-00002H
r00001H

LO0000OH

Type O0H Interrupt
(Divide by Zero)

:p“

/‘-

Available Interrupts

(224)

Reserved Interrupts

- (27)

Dedicated Interrupts

(05)




Q0O3FF
QO3FE
O03FD
003FC

(slaleia]="
O000A
00009
QOO0
00007
00006
(O18 1818 =)
00004
00003
00002
0000 |
00000

Memory address (in Hex)

C5 high bvte

S low byle

S

IF high byte
I low bytc

1=

S high byvie

CS low byte

5

TP high hyte

IP low byte

1P

CS high byte

CS low byte

s

1F hmigh byvte
1P low byvte

1P

s high byie

S low byle

S

IFP hizh byie
IP low byte

1

v

SN

Y

-

>

int typec 255

int tyjpe 2

it tvpe 1

int type O



| 00002H (% 00003H
2 hytes CS LSB (‘ CS MSB Type 0 or
INT 00 Interrupt
2 bytes 00000H \$ 00001H
IP LSB IP MSB
CS LSB MSB

Given a vector, where is the ISR address stored in memory ?

Offset = Type number X 4

Example:- INT 02h

Offset=02x4 =08
=00008h



/

/

256 Interrupts Of 8086 are Divided in To 3 Group

1. Type 00 to Type 04 interrupts-
These are used for fixed operations and hence are called
dedicated interrupts

2. Type 05 to Type 31 interrupts
Not used by 8086,reserved for higher processors like 80286
80386 etc.

3. Type 32 to Type 255 interrupts
Available for user, called user defined interrupts these can be

H/W interrupts and activated through INTR line or can be S/W
interrupts.



» Type - 0 :- Divide by ZerW
/

Quotient is large cant be fit in al/ax or divide by zero

» Type -1:- Single step or Trap Interrupt
Used for executing the program in single step mode by setting
trap flag.

»Type - 2:- Non-Maskable Interrupt
This interrupt is used for executing ISR of NMI pin (positive
edge signal), NMI can’t be masked by S/W.

»Type - 3:- One-byte INT instruction interrupt
Used for providing break points in the program

»Type - 4 Over flow Interrupt

Used to handle any overflow error after signed arithmetic.



: - i
it edit C:‘aemuEDEE-\MySuurce\...| = | = |£L-I . message 2

file edit bookmarks assembler emulator e divide eror - overflow

o o . to manually process this error,
[ = e & change address of INT 0 in interrupt vector table.
new open  examples SAVE i
moy al,.B5h —
| mov d1.@@h a
div dl
hlt

0K

Attempted to divide by zero. | at LearnfiboutTryCatchl. GenerateExceptlun(IntEE arpn
gl, Int32 arg2) in C:sDocuments and Settings“PuranDesktop“My Documents“Uisual Sty
udio ZUMSS\FrojectsslryCatchsIryCatchsProgram.cs:line 13

Arithmetic operation resulted in an overflow. at LearnAboutTryCatchl.GenerateE
wception{Int32 argl, Int32 arg2} in C:sDocuments and Settings™PuranDesktop“My Do
cumentss\Uisual Studio 2885\Projectss\ITryCatch:\TryCatchs\Program.cs:line 17




BIOS Interrupt or Function Calls

¢ The BIOS (basic input/output system) is boot firmware, which is
designed to be the first program run by a PC when powered on.

¢ The initial function of the BIOS is to identify, test, and initialize
system devices such as the video display card, hard disk, floppy
disk, and other hardware.

¢ The BIOS prepares the machine for a known state, so that the
software stored on the compatible media can be loaded, executed,
and given control of the PC.

¢ BIOS function calls, also known as BIOS interrupts, are stored in

the system ROM and in the video BIOS ROM present in the PC.



p
Application program
N N
DOS support
N N
V V
BIOS support

V A

Input/Output devices




g DOSinterrupts —

< INT 21h is provided by DOS.

** When MS-DOS is loaded into the computer, INT 21H can be
invoked to perform some extremely useful functions.

¢ These functions are commonly referred to as DOS INT 21H
function calls.

¢ Data input and output through the keyboard and monitor are the
most commonly used functions.



— e

‘Below are two examples that use DOS interrupts.

1. Display the message defined with variable DATA DB

‘Microprocessor, $’

MOV AH,09 Option 9 to display string of data
MOV DX, OFFSET DATA DX= offset address of data
INT 21H Invoke the interrupt
2. Inputting a single character, with echo.
MOV AH, 01 Option 01 to input one character
INT 21H Invoke the interrupt



Input parameter AH = 01 read a character from keyboard. Echo it on CRO

screen and return the ASCII code of the key pressed in AL output parameter:
AL = ASCII code of character

Function call 02h: Display on CRT screen

Input parameter: AH = 02

DI = ASCII character to be displayed on CRT screen

Function call 03: Read character from com1

Input parameter: AH = 03h

Function: Reads data from com port

Output parameter: AL = ASCII code of character

Function call 04: Write character to com1

Input parameter: AH = 04h DL = ASCII code of character to be transmitted

Function: Writes data to com port



Function call 05 Write to Lptl

ut parameter: AL = 05H
DL = ASCII code of character to be printed

Function: Print the character available in dl on printer attached to Lpt1
Function call 09: Display a character string

Input parameter: AH = 09, DS:DX= Address of character string

Function: Displays the characters available in the string to CRT till a $ symbol
Function call 0Ah: Buffered key board input

Input parameter: AH = 0Ah

DS:DX = Address of keyboard input buffer

Function: The ASCII codes of the characters received from keyboard are stored
in keyboard buffer from 3™ byte. 15t byte of buffer = size of buffer upto 255. It
receives the characters till specified no.Of characters are received or enter key

is presses which ever is earlier



BIOS interrupt —
/' —
= INT 10H subroutines are burned into the ROM BIOS of the

8086 based and compatibles and are used to communicate with the
computer user screen video. Much of the manipulation of screen text
or graphics is done through INT 10H. Among them are changing the
color of characters or background, clearing screen, and changing the
locations of cursor. Below are two examples that use BIOS interrupts.

1. Clearing the screen:

MOV AX, 0600H :scroll entire screen
MOV BH, 07 ;normal attribute

MOV CX, 0000 :start at 00,00

MOV DX, 184FH :end at 18, 4F

INT 10H ;invoke the interrupt



BIOS (Basic Input/output System) INTERR

10H:Video Service Interrupt:-It Controls The Video Display
a ) Function Call 00: Select Video Mode

—

Input Parameter: AL = Mode Number
AH = 00h

Function: It Changes The Display Mode And Clears The Screen
AL =00 40 X 25 Black And White
AL = 04 320 X 200 Color
AL = 10h 640 X 350 X 16 Color

b) Function Call 03: Read Cursor Position
Input Parameter: AH =03

BH = Page Number
Function: Reads Cursor Position On Screen
Output Parameters: =~ CH = Starting Line
CL = Ending Line
DH = Current Row
DL = Current Column
C) Function Call OE: Write Character On CRT Screen And Advance Cursor
Input Parameter: Ah = OEh
AH = ASCII Code Of The Character
BH = Page(text Mode)
BH = Color(graphics)
Function: Display Character Available In Al On Screen



Othe rupts.:-

INT 11H:- Determine the type of equipment installed. Register AX should contain
FFFFH and instruction INT 11H to be executed. On return, register AX will
indicate the equipment's attached to computer

INT14H:- Control the serial communication port attached to the computer. Ah
should contain the function call

a) Function Call 00:initialize The Com Port
b) Function Call 01: Send A Character
c) Function Call 02:receive A Character

INT 16H:-Keyboard interrupt AH should contain the function call
a) Function call 00: Read keyboard character, It will return ASCII code of the

character

b) Function call 01: Get key board status






