SNS COLLEGE OF TECHNOLOGY Coimbatore-35
 An Autenomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A++' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

19ECB231 - DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 4 - DESIGN OF SEQUENTIAL CIRCUITS

TOPIC -STATE MINIMIZATION \& ASSIGNMENT

State Reduction and Assignmerwsinna

- The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or diagram.
- The design of a sequential circuit starts from a set of specifications and culminates discusses certain properties of sequential circuits that may be used to reduce the number of gates and flipflops during the design.

State Reduction

LISTITUTIONS

- The reduction of the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping the external input-output requirements unchanged.
- Since m flip-flops produce 2^{m} states, a reduction in the number of states may result in a reduction in the number of flip-flops. An unpredictable effect in reducing the number of flip-flops is that sometimes the equivalent circuit may require more combinational gates.

State Reduction

Example :

O/O

Fig. 5-22 State Diagram
$1 / 1 \quad 1 / 1$

$1 / 1$
state
input
output

Initial point

State Reduction

We now proceed to reduce the number of states for this example. First, we need the state table; it is more convenient to apply procedures for state reduction using a table rather than a diagram. The state table of the circuit is listed in Table 5-6 and is obtained directly from the state diagram.

Table 5-6
State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
$\boldsymbol{x}=\mathbf{1}$					
a	a	b		0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

State Reduction

States g and e are two such states: they both go to states a and f and have outputs of 0 and 1 for $x=0$ and $x=1$, respectively. Therefore, states g and e are equivalent and one of these states can be removed. The procedure of removing a state and replacing it by its equivalent is demonstrated in Table 5-7. The row with present g is removed and state g is replaced by state e each time it occurs in the next-state columns.

Table 5-7
Reducing the State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b		0	0
b	c	d		0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	e	f	0	1	

State Reduction

Present state f now has next states e and f and outputs 0 and 1 for $x=0$ and $x=1$, respectively. The same next states and outputs appear in the row with present state d.
Therefore, states f and d are equivalent and state f can be removed and replaced by d . The final reduced table is shown in Table 5-8. The state diagram for the reduced table consists of only five states and is shown in Fig. 5-23.

Table 5-8
Reduced State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b		0	0
b	c	d		0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

State Reduction

state $a \quad a \quad b \quad c \quad d \quad e \quad d \quad d e$ $\begin{array}{llllllllll}\text { input } & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ \text { output } & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$

Fig. 5-23 Reduced State Diagram

Table 5-9
Three Possible Binary State Assignments

State	Assignment 1 Binary	Assignment 2 Gray code	Assignment $\mathbf{3}$ One-hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

Table 5-10
Reduced State Table with Binary Assignment 1

	Next State		Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

5-7 Design Procedure

IISTITIVTIOIVS

The procedure for designing synchronous sequential circuits can be summarized by a list of recommended steps.

1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
2. Reduce the number of states if necessary.
3. Assign binary values to the states.
4. Obtain the binary-coded state table.
5. Choose the type of flip-flops to be used.
6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.

Design Procedure

Fig. 5-24 State Diagram for Sequence Detector

$$
\begin{aligned}
A(t+1)=D_{A}(A, B, x) & =\sum(3,5,7) \\
B(t+1)=D_{B}(A, B, x) & =\sum(1,5,7) \\
y(A, B, x) & =\sum(6,7)
\end{aligned}
$$

Table 5-11
State Table for Sequence Detector

Present State		Input x	Next State		Output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$
\begin{aligned}
D_{A} & =A x+B x \\
D_{B} & =A x+B^{\prime} x \\
y & =A B
\end{aligned}
$$

$D_{A}=A x+B x$

$D_{B}=A x+B^{\prime} x$

$y=A B$

Fig. 5-25 Maps for Sequence Detector

Fig. 5-26 Logic Diagram of Sequence Detector

Table 5-12
Flip-Flop Excitation Tables

$Q(t)$	$Q(t+1)$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

(a) $J K$

Ref. Table 5-1

Table 5-13
State Table and JK Flip-Flop Inputs

Present State		$\frac{\text { Input }}{x}$	Nḕt State		Flip-Flop Inputs			
A	B		A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0		0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1		0	- θ	X	1	X	1

Synthesis Using JK Flip-Flops Sis

ice Hall, Inc.
Fig. 5-27 Maps for \boldsymbol{J} and \boldsymbol{K} Input Equations

Fig. 5-28 Logic Diagram for Sequential Circuit with $J K$ Flip-Flops

Synthesis Using T Flip-Flops

The synthesis using T flip-flops will be demonstrated by designing a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from 0 to $2^{n}-1$. The state diagram of a 3 -bit counter is shown in Fia. 5-29.

$Q(t)$	$Q(t+\mathbf{1)}$	\boldsymbol{T}
0	0	0
0	1	1
1	0	1
1	1	0

(b) T

Fig. 5-29 State Diagram of 3-Bit Binary Counter

Synthesis Using T Flip-Flops

Table 5-14
State Table for 3-Bit Counter

Fig. 5-30 Maps for 3-Bit Binary Counter

Fig. 5-31 Logic Diagram of 3-Bit Binary Counter

