

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 <u>An Autonomous Institution</u>

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

19ECB231 – DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 4 – DESIGN OF SEQUENTIAL CIRCUITS

TOPIC – STATE MINIMIZATION & ASSIGNMENT

25-Dec-23

State Reduction and Assignmer

• The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or diagram.

• The design of a sequential circuit starts from a set of specifications and culminates discusses certain properties of sequential circuits that may be used to reduce the number of gates and flip-flops during the design.

State Reduction

- The reduction of the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping the external input-output requirements unchanged.
- Since m flip-flops produce 2^m states, a reduction in the number of states may result in a reduction in the number of flip-flops. An unpredictable effect in reducing the number of flip-flops is that sometimes the equivalent circuit may require more combinational gates.

25-Dec-23

We now proceed to reduce the number of states for this example. First, we need the state table; it is more convenient to apply procedures for state reduction using a table rather than a diagram. The state table of the circuit is listed in Table 5-6 and is obtained directly from the state diagram.

	Next	State	Out	put
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	x = 1
a	a	Ь	0	0
b	с	d	0	0
c	а	d	0	0
d	е	f	0	1
e	а	f	0	1
f	g	f	0	1
g	a	f	0	1

States g and e are two such states: they both go to states a and f and have outputs of 0 and 1 for x=0 and x=1, respectively. Therefore, states g and e are equivalent and one of these states can be removed. The procedure of removing a state and replacing it by its equivalent is demonstrated in Table 5-7. The row

with present g is removed and state g is replaced by state e each time it occurs in the next-state columns.

	Next	State	Out	put
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	x = 1
а	а	b	0	0
b	с	d	0	0
С	а	d	0	0
d	е	f	0	1
e	a	f	0	1
f	(e)	f	0	1

Present state f now has next states e and f and outputs 0 and 1 for x=0 and x=1, respectively. The same next states and outputs appear in the row with present state d. Therefore, states f and d are equivalent and state f can be removed and replaced by d. The final reduced table is shown in Table 5-8. The state diagram for the reduced table consists of only five Table 5-8

states and is shown in Fig. 5-23.

	Next	State	Out	put
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1
a	а	Ь	0	0
Ь	с	d	0	0
nonce coo legizida	a	d	0	0
d d d d	e	d	0	1
e	а	d	0	1

State Assignment

Table 5-9

Three Possible Binary State Assignments

State	Assignment 1 Binary	Assignment 2 Gray code	Assignment 3 One-hot
a	000	000	00001
b	001	001	00010
с	010	011	00100
d	011	010	01000
е	100	110	10000

Table 5-10

Reduced State Table with Binary Assignment 1

	Next	State	Out	put
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	
000	000	001	 0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

25-Dec-23

The procedure for designing synchronous sequential circuits can be summarized by a list of recommended steps.

- 1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- 2. Reduce the number of states if necessary.
- 3. Assign binary values to the states.
- 4. Obtain the binary-coded state table.
- 5. Choose the type of flip-flops to be used.
- 6. Derive the simplified flip-flop input equations and output equations.
- 7. Draw the logic diagram.

Fig. 5-24 State Diagram for Sequence Detector

25-Dec-23

Synthesis Using D Flip-Flops

$A(t + 1) = D_A(A, B, x) = \Sigma (3, 5, 7)$	
$B(t + 1) = D_B(A, B, x) = \Sigma (1, 5, 7)$	
$y(A, B, x) = \sum (6, 7)$	

Table	5-11			
State	Table	for Sec	uence	Detector

Pres Stat	ent	Input	Ne Sta		Output
A	В	×	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1.1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	a tran 1 the fi	1.0	1	0
1	1 1 1 m	0	0	0	te citta 1 in a
1	1	1	1	1	1

Synthesis Using D Flip-Flops

Fig. 5-26 Logic Diagram of Sequence Detector

25-Dec-23

Table 5-13

 Table 5-12

 Flip-Flop Excitation Tables

Q(t)	Q(t + 1)	J	K
0	0	0	X
0	1 8	1	X
1	0	X	1
1	1	X	0

Ref. Table 5-1

State Table and JK Flip-Flop Inputs Next Present **Flip-Flop Inputs** State Input State В JA KA $J_B K_B$ B A X 0 X 0 X 0 0 0 0 X X 0 X X 1 0 0 X X 0 0 X 0 X 0 0 Х 0 X en fram des fi-ch 0 X 0 X 0 0 1 X Х

tice Hall, Inc.

25-Dec-23

Fig. 5-28 Logic Diagram for Sequential Circuit with JK Flip-Flops

Synthesis Using T Flip-Flops

The synthesis using T flip-flops will be demonstrated by designing a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from 0 to 2ⁿ-1. The state diagram of a 3-bit counter is shown in Fig. 5-29.

$$\begin{array}{c|c} Q(t) & Q(t+1) & T \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline (b)T \end{array}$$

Fig. 5-29 State Diagram of 3-Bit Binary Counter

Synthesis Using T Flip-Flops

Table 5-14 State Table for 3-Bit Counter **Flip-Flop Inputs Next State Present State** TAZ TA1 TAO Ao Ao Az A A 0 0 0 0 0 0 0 0 0 1 0 0 0 0 n 0 0

25-Dec-23

Fig. 5-30 Maps for 3-Bit Binary Counter

25-Dec-23

Fig. 5-31 Logic Diagram of 3-Bit Binary Counter

25-Dec-23

THANK YOU

25-Dec-23