SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A++' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

19ECB231 - DIGITAL ELECTRONICS
II YEAR/ III SEMESTER

UNIT 4 - DESIGN OF SEQUENTIAL CIRCUITS
TOPIC -RING COUNTER

COUNTERS

- A Counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal.
- Counters are used in digital electronics for counting purpose, they can count specific event happening in the circuit.
- For example, in UP counter a counter increases count for every rising edge of clock.

COUNTERS

- Not only counting, a counter can follow the certain
sequence based on our design like any random sequence
$0,1,3,2 \ldots$. They can also be designed with the help of flip flops.

Counter Classification

- Counters are broadly divided into two categories
- Asynchronous counter
- Synchronous counter
- ' N ' bit Ring counter performs the similar operation of SIPO shift register.
- But, the only difference is that the output of rightmost D flip-flop is given as input of leftmost D flip-flop instead of applying data from outside.
- Therefore, Ring counter produces a sequence of states pattern of zeros and ones pattern of zeros and ones and it repeats for every ' N ' clock cycles.

RING COUNTER

CLK	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}
1	1	0	0	0	0	0
2	0	1	0	0	0	0
3	0	0	1	0	0	0
4	0	0	0	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

JOHNSON COUNTER

- The operation of Johnson Ring counter is similar to that of Ring counter.
- But, the only difference is that the complemented output of rightmost D flip-flop is given as input of leftmost D flip-flop instead of normal output.
- Therefore, ' N ' bit Johnson Ring counter produces a sequence of states pattern of zeros and ones pattern of zeros and ones and it repeats for every ' 2 N ' clock cycles.
- Johnson Ring counter is also called as Twisted Ring counter and switch tail Ring counter.

JOHNSON COUNTER

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}
$\rightarrow 0$	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

THANK YOU

