

# **SNS COLLEGE OF TECHNOLOGY**

**Coimbatore-35 An Autonomous Institution** 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# **DEPARTMENT OF ELECTRONICS AND COMMUNICATION**

## **ENGINEERING**

### **19ECT201 – ELECTRICAL ENGINEERING & INSTRUMENTATION II YEAR IV SEM**

### **UNIT 3 – INDUCTION MACHINES**

**TOPIC 5- Voltage regulation of Alternator** 

U3-Voltage Regulation of alternator/19ECT201-EEI/S.KAVIPRIYA/ECE/SNSCT

13/09/2021









>When an alternator is loaded the armature terminal voltage will be less than the emf induced in the armature.  $\triangleright$  Due to the effect of armature reaction there will be a drop in induced emf. > If the load is disconnected (open-circuited) armature current becomes zero, no armature flux and armature reaction effect. Therefore the terminal voltage will be equal to induced emf at no-load conditions.







 $\succ$  The changes in terminal voltage on the application of load at a constant driving speed and field excitation. > It is expressed in per-unit or percentage of variation in armature terminal voltage from no-load to full-load divided by the rated terminal voltage.

% Regulation = 
$$\frac{E_o - V}{V} \times 1$$
  
Per Unit Regulation =  $\frac{E_o - V}{V}$ 





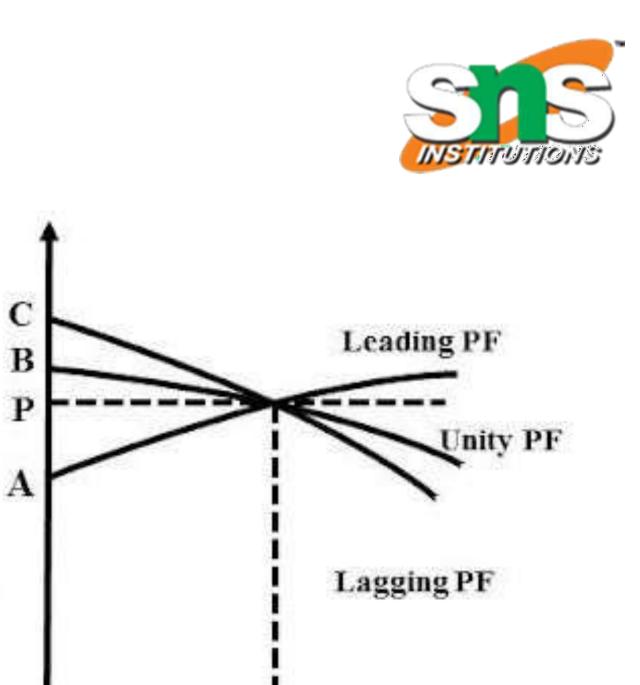
00





 $\succ$  The variation in terminal voltage also depends upon the magnitude and power factor of the load.  $\succ$  If the load connected is inductive or resistive type. For lagging and unity power factor conditions the effect of armature reaction  $\succ$  i.e., the effect of armature flux on main flux will be demagnetizing and cross-magnetising effects respectively.






- $\succ$  Thus the terminal voltage drop hence regulation will be always positive.
- $\geq$  In the case of capacitive loads (leading p.f.), the effect of armature reaction will be a magnetizing effect i.e., armature flux add up with main flux.  $\succ$  This causes to increase in terminal voltage as the load current
- increases and the regulation becomes negative.





Change in terminal voltage  $Per \ Unit \ Reg. = \ \frac{no-load \ to \ full-load}{Full-load \ terminal \ voltage}$  $= \frac{OB - OP}{OP} = \frac{BP}{OP} \text{ at unity } p.f.$  $= \frac{OA - OP}{OP} = \frac{AP}{OP} \text{ at lagging } p.f.$  $= \frac{OC - OP}{OP} = \frac{CP}{OP} \text{ at leading } p.f.$ 



L

1<sub>a</sub>

C

B

P

0

v



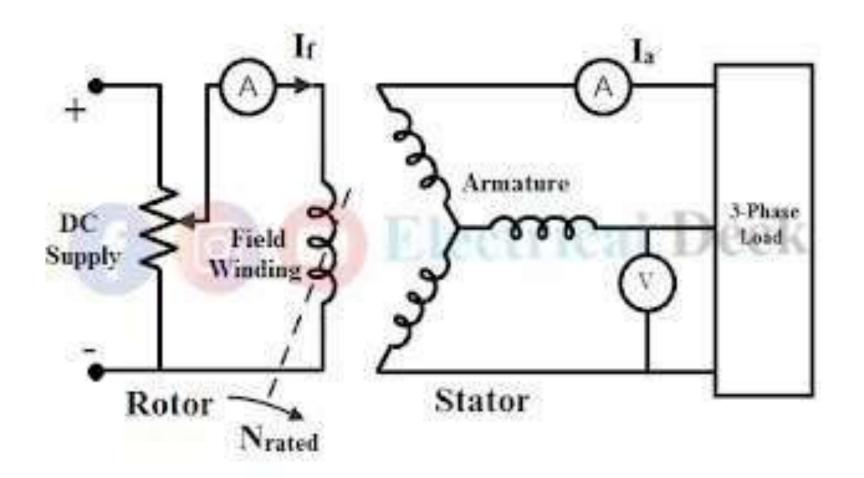
### **Determination of Regulation**

There are several methods of determining the voltage regulation of an

alternator.

They are,

Direct Loading Method.


Indirect Methods.



### **Determination of Regulation**

# **Direct Loading Method** :

The direct loading method is well suited for small rating alternators without actual loading.







### **Determination of Regulation**

# **Indirect Methods of Voltage Regulation :**

Alternators at the power plants are of large rating as 500MVA.  $\succ$  It is difficult to determine voltage regulation for such high capacity alternators using direct loading at the laboratory.  $\succ$  It is therefore to perform indirect methods by indirectly simulating the load conditions which consumes less power.  $\succ$  The various indirect methods of determining voltage regulation are, <u>Synchronous Impedance Method or EMF Method</u>. <u>Ampere-turn Method or MMF Method of Voltage Regulation.</u> Zero Power Factor Method or Potier Method. ASA Modification of M.M.F. Method.





Thank You

U3-Voltage Regulation of alternator/19ECT201-EEI/S.KAVIPRIYA/ECE/SNSCT

