
Software Testing

1

“Testing is the process of executing a program with the 

intention of finding errors.” – Myers

“Testing can show the presence of bugs but never their 

absence.” - Dijkstra

SNSCT / IT / SE / Dr.L.M.Nithya



Strategic Approach

2

 To perform effective testing, you should conduct effective
technical reviews. By doing this, many errors will be
eliminated before testing commences.

 Testing begins at the component level and works
"outward" toward the integration of the entire computer-
based system.

 Different testing techniques are appropriate for different
software engineering approaches and at different points in
time.

 Testing is conducted by the developer of the software and
(for large projects) an independent test group.

 Testing and debugging are different activities, but
debugging must be accommodated in any testing strategy.
am
SNSCT / IT / SE / Dr.L.M.Nithya



V & V

3

 Verification refers to the set of tasks that ensure 
that software correctly implements a specific 
function. 

 Validation refers to a different set of tasks that 
ensure that the software that has been built is 
traceable to customer requirements. Boehm 
[Boe81] states this another way: 

 Verification: "Are we building the product right?" 

 Validation: "Are we building the right product?"

SNSCT / IT / SE / Dr.L.M.Nithya



Who Tests the Software?

4

developer independent tester

Understands the system 

but, will test "gently"

and, is driven by "delivery"

Must learn about the system,

but, will attempt to break it

and, is driven by quality

SNSCT / IT / SE / Dr.L.M.Nithya



Good Testing Practices

 A good test case is one that has a high probability of detecting 

an undiscovered defect, not one that shows that the program 

works correctly

 It is impossible to test your own program

 A necessary part of every test case is a description of the 

expected result

5 SNSCT / IT / SE / Dr.L.M.Nithya



Testing Strategy

6

System engineering

Analysis modeling

Design modeling

Code generation Unit test

Integration test

System test

Acceptance test

SNSCT / IT / SE / Dr.L.M.Nithya



Testing Strategy

7

 We begin by ‘testing-in-the-small’ and move toward 

‘testing-in-the-large’

 For conventional software

 The module (component) is our initial focus

 Integration of modules follows

 For OO software

 our focus when “testing in the small” changes from an individual 

module (the conventional view) to an OO class that 

encompasses attributes and operations and implies 

communication and collaboration

SNSCT / IT / SE / Dr.L.M.Nithya



LEVELS OF TESTING

8 SNSCT / IT / SE / Dr.L.M.Nithya



9

 Stubs and Drivers are computer programs which act as a

substitutes of some other modules which are not available for

testing.

 These computer programs will simulate the functionalities of

the other modules thereby facilitating the software testing

activity.

Stubs & Drivers

SNSCT / IT / SE / Dr.L.M.Nithya



1.Unit Testing

10

module
to be

tested

test cases

results

software
engineer

SNSCT / IT / SE / Dr.L.M.Nithya



Unit Testing

11

interface 

local data structures

boundary conditions

independent paths

error handling paths

module
to be

tested

test cases
SNSCT / IT / SE / Dr.L.M.Nithya



Unit Test Environment

12

Module

stub stub

driver

RESULTS

interface 

local data structures

boundary conditions

independent paths

error handling paths

test cases

SNSCT / IT / SE / Dr.L.M.Nithya



2.Integration Testing Strategies

13

Options:

• the “big bang” approach

• an incremental construction strategy

SNSCT / IT / SE / Dr.L.M.Nithya



Why Integration Testing 

Is Necessary

 One module can have an adverse effect on another

 Sub-functions, when combined, may not produce the desired 

major function

 Individually acceptable imprecision in calculations may be 

magnified to unacceptable levels

 Interfacing errors not detected in unit testing may appear

 Timing problems (in real-time systems) are not detectable by 

unit testing

 Resource contention problems are not detectable by unit 

testing

14 SNSCT / IT / SE / Dr.L.M.Nithya



Top-Down Integration

1. The main control module is used as a driver, and stubs are 

substituted for all modules directly subordinate to the 

main module.

2. Depending on the integration approach selected (depth or 

breadth first), subordinate stubs are replaced by modules 

one at a time.

3. Tests are run as each individual module is integrated.

4. On the successful completion of a set of tests, another 
stub is replaced with a real module

5. Regression testing is performed to ensure that errors have 
not developed as result of integrating new modules

15 SNSCT / IT / SE / Dr.L.M.Nithya



Top Down Integration

16

top module is tested with 
stubs

stubs are replaced one at 
a time, "depth first"

as new modules are integrated, 
some subset of tests is re-run

A

B

C

D E

F G

SNSCT / IT / SE / Dr.L.M.Nithya



Problems with Top-Down Integration

 Many times, calculations are performed in the modules at
the bottom of the hierarchy

 Stubs typically do not pass data up to the higher modules

 Delaying testing until lower-level modules are ready
usually results in integrating many modules at the same
time rather than one at a time

 Developing stubs that can pass data up is almost as much
work as developing the actual module

17 SNSCT / IT / SE / Dr.L.M.Nithya



Bottom-Up Integration

 Integration begins with the lowest-level modules, which 

are combined into clusters, or builds, that perform a 

specific software sub-function

 Drivers (control programs developed as stubs) are 

written to coordinate test case input and output

 The cluster is tested

 Drivers are removed and clusters are combined moving 

upward in the program structure

18 SNSCT / IT / SE / Dr.L.M.Nithya



Bottom-Up Integration

19

drivers are replaced one at a 
time, "depth first"

worker modules are grouped into 
builds and integrated

A

B

C

D E

F G

cluster

SNSCT / IT / SE / Dr.L.M.Nithya



Problems with Bottom-Up Integration

 The whole program does not exist until the last

module is integrated

 Timing and resource contention problems are not

found until late in the process

20 SNSCT / IT / SE / Dr.L.M.Nithya



Sandwich Testing

21

Top modules are

tested with stubs

Worker modules are grouped into 
builds and integrated

A

B

C

D E

F G

cluster
SNSCT / IT / SE / Dr.L.M.Nithya



3) System testing:

22

 System testing is performed on a complete, integrated

system. It allows checking system's compliance as per the

requirements. It tests the overall interaction of components.

It involves load, performance, reliability and security testing.

 System testing most often the final test to verify that the

system meets the specification. It evaluates both functional

and non-functional need for the testing.

SNSCT / IT / SE / Dr.L.M.Nithya

https://www.guru99.com/system-testing.html


4) Acceptance testing:

23

 Acceptance testing is a test conducted to find if the requirements

of a specification or contract are met as per its delivery.

 Acceptance testing is basically done by the user or customer.

 However, other stackholders can be involved in this process.

 Alpha testing

 Beta testing

 Alpha testing is done on the side of developers. This is done at the

end of the development process.

 Beta testing, beta testing is carried out on the customer side. This 

is done just before the launch of the product.

SNSCT / IT / SE / Dr.L.M.Nithya

https://www.guru99.com/user-acceptance-testing.html


Regression Testing

24

 Regression testing is the re-execution of some subset of tests

that have already been conducted to ensure that changes

have not propagated unintended side effects

 Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data
that support it) is changed.

 Regression testing helps to ensure that changes (due to
testing or for other reasons) do not introduce unintended
behavior or additional errors.

 Regression testing may be conducted manually, by re-
executing a subset of all test cases or using automated
capture/playback tools.SNSCT / IT / SE / Dr.L.M.Nithya



Smoke Testing

25

 A common approach for creating “daily builds” for product software

 Smoke testing steps:

 Software components that have been translated into code are integrated 
into a “build.” 

 A build includes all data files, libraries, reusable modules, and 
engineered components that are required to implement one or more 
product functions.

 A series of tests is designed to expose errors that will keep the build from 
properly performing its function. 

 The intent should be to uncover “show stopper” errors that have the 
highest likelihood of throwing the software project behind schedule.

 The build is integrated with other builds and the entire product (in its 
current form) is smoke tested daily. 

 The integration approach may be top down or bottom up.

SNSCT / IT / SE / Dr.L.M.Nithya



High Order Testing

26

 Validation testing

 Focus is on software requirements

 System testing

 Focus is on system integration

 Recovery testing

 forces the software to fail in a variety of ways and verifies that recovery is 
properly performed

 Security testing

 verifies that protection mechanisms built into a system will, in fact, 
protect it from improper penetration

 Stress testing

 executes a system in a manner that demands resources in abnormal 
quantity, frequency, or volume

 Performance Testing

 test the run-time performance of software within the context of an 
integrated system

SNSCT / IT / SE / Dr.L.M.Nithya


