
SOFTWARE MAINTENANCE 

Software maintenance is widely accepted part of SDLC now a days. It 

stands for all the modifications and updations done after the delivery of 

software product. There are number of reasons, why modifications are 

required, some of them are briefly mentioned below: 

 Market Conditions - Policies, which changes over the time, such as taxation 

and newly introduced constraints like, how to maintain bookkeeping, may 

trigger need for modification. 

 Client Requirements - Over the time, customer may ask for new features or 

functions in the software. 

 Host Modifications - If any of the hardware and/or platform (such as operating 

system) of the target host changes, software changes are needed to keep 

adaptability. 

 Organization Changes - If there is any business level change at client end, 

such as reduction of organization strength, acquiring another company, 

organization venturing into new business, need to modify in the original 

software may arise. 

Types of maintenance 
In a software lifetime, type of maintenance may vary based on its nature. It 

may be just a routine maintenance tasks as some bug discovered by some 

user or it may be a large event in itself based on maintenance size or 

nature. Following are some types of maintenance based on their 

characteristics: 

 Corrective Maintenance - This includes modifications and updations done in 

order to correct or fix problems, which are either discovered by user or 

concluded by user error reports. 

 Adaptive Maintenance - This includes modifications and updations applied to 

keep the software product up-to date and tuned to the ever changing world of 

technology and business environment. 

 Perfective Maintenance - This includes modifications and updates done in 

order to keep the software usable over long period of time. It includes new 

features, new user requirements for refining the software and improve its 

reliability and performance. 



 Preventive Maintenance - This includes modifications and updations to 

prevent future problems of the software. It aims to attend problems, which are 

not significant at this moment but may cause serious issues in future. 

Cost of Maintenance 
Reports suggest that the cost of maintenance is high. A study on estimating 

software maintenance found that the cost of maintenance is as high as 67% 

of the cost of entire software process cycle. 

 

On an average, the cost of software maintenance is more than 50% of all 

SDLC phases. There are various factors, which trigger maintenance cost go 

high, such as: 

Real-world factors affecting Maintenance Cost 

 The standard age of any software is considered up to 10 to 15 years. 

 Older softwares, which were meant to work on slow machines with less memory 

and storage capacity cannot keep themselves challenging against newly coming 

enhanced softwares on modern hardware. 

 As technology advances, it becomes costly to maintain old software. 

 Most maintenance engineers are newbie and use trial and error method to rectify 

problem. 

 Often, changes made can easily hurt the original structure of the software, 

making it hard for any subsequent changes. 



 Changes are often left undocumented which may cause more conflicts in future. 

Software-end factors affecting Maintenance Cost 

 Structure of Software Program 

 Programming Language 

 Dependence on external environment 

 Staff reliability and availability 

Maintenance Activities 
IEEE provides a framework for sequential maintenance process activities. It 

can be used in iterative manner and can be extended so that customized 

items and processes can be included. 

 

These activities go hand-in-hand with each of the following phase: 

 Identification & Tracing - It involves activities pertaining to identification of 

requirement of modification or maintenance. It is generated by user or system 

may itself report via logs or error messages.Here, the maintenance type is 

classified also. 

 Analysis - The modification is analyzed for its impact on the system including 

safety and security implications. If probable impact is severe, alternative 



solution is looked for. A set of required modifications is then materialized into 

requirement specifications. The cost of modification/maintenance is analyzed 

and estimation is concluded. 

 Design - New modules, which need to be replaced or modified, are designed 

against requirement specifications set in the previous stage. Test cases are 

created for validation and verification. 

 Implementation - The new modules are coded with the help of structured 

design created in the design step.Every programmer is expected to do unit 

testing in parallel. 

 System Testing - Integration testing is done among newly created modules. 

Integration testing is also carried out between new modules and the system. 

Finally the system is tested as a whole, following regressive testing procedures. 

 Acceptance Testing - After testing the system internally, it is tested for 

acceptance with the help of users. If at this state, user complaints some issues 

they are addressed or noted to address in next iteration. 

 Delivery - After acceptance test, the system is deployed all over the 

organization either by small update package or fresh installation of the system. 

The final testing takes place at client end after the software is delivered. 

Training facility is provided if required, in addition to the hard copy of user 

manual. 

 Maintenance management - Configuration management is an essential part 

of system maintenance. It is aided with version control tools to control versions, 

semi-version or patch management. 

Software Re-engineering 
When we need to update the software to keep it to the current market, 

without impacting its functionality, it is called software re-engineering. It is 

a thorough process where the design of software is changed and programs 

are re-written. 

Legacy software cannot keep tuning with the latest technology available in 

the market. As the hardware become obsolete, updating of software 

becomes a headache. Even if software grows old with time, its functionality 

does not. 



For example, initially Unix was developed in assembly language. When 

language C came into existence, Unix was re-engineered in C, because 

working in assembly language was difficult. 

Other than this, sometimes programmers notice that few parts of software 

need more maintenance than others and they also need re-engineering. 

 

Re-Engineering Process 

 Decide what to re-engineer. Is it whole software or a part of it? 

 Perform Reverse Engineering, in order to obtain specifications of existing 

software. 

 Restructure Program if required. For example, changing function-oriented 

programs into object-oriented programs. 

 Re-structure data as required. 

 Apply Forward engineering concepts in order to get re-engineered software. 

There are few important terms used in Software re-engineering 

Reverse Engineering 

It is a process to achieve system specification by thoroughly analyzing, 

understanding the existing system. This process can be seen as reverse 

SDLC model, i.e. we try to get higher abstraction level by analyzing lower 

abstraction levels. 

An existing system is previously implemented design, about which we know 

nothing. Designers then do reverse engineering by looking at the code and 



try to get the design. With design in hand, they try to conclude the 

specifications. Thus, going in reverse from code to system specification. 

 

 

 Requirement Specification - The functional and non-functional requirements 

are specified, which a software product must comply to, with the help of 

existing system, user input or both. 

 Design - This is also a standard SDLC process step, where requirements are 

defined in terms of software parlance. Basic architecture of system as a whole 

and its sub-systems are created. 

 Specify Components - By studying the software design, the designers 

segregate the entire system into smaller components or sub-systems. One 

complete software design turns into a collection of a huge set of components 

working together. 

 Search Suitable Components - The software component repository is referred 

by designers to search for the matching component, on the basis of 

functionality and intended software requirements.. 

 Incorporate Components - All matched components are packed together to 

shape them as complete software. 


