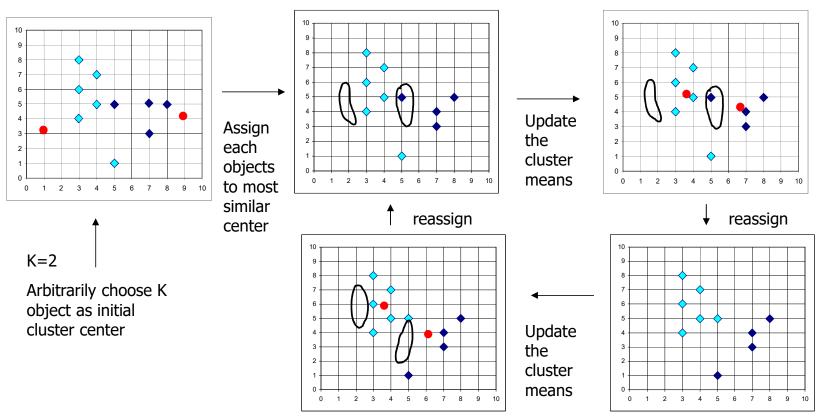
Partitioning Algorithms: Basic Concept

<u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters, s.t., min sum of squared distance


- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given *k*, the *k*-means algorithm is implemented in four steps:
 - Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

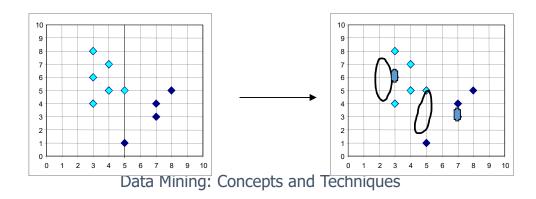
The K-Means Clustering Method

• Example

Data Mining: Concepts and Techniques

Comments on the *K-Means* Method

- <u>Strength:</u> *Relatively efficient*: *O*(*tkn*), where *n* is # objects, *k* is # clusters, and *t* is # iterations. Normally, *k*, *t* << *n*.
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*


Variations of the K-Means Method

- A few variants of the *k*-means which differ in
 - Selection of the initial *k* means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes* (Huang'98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

Data Mining: Concepts and Techniques

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers !
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

