
Heap Sort Algorithm 

A heap is a complete binary tree, and the binary tree is a tree in which the node 

can have the utmost two children. A complete binary tree is a binary tree in 

which all the levels except the last level, i.e., leaf node, should be completely 

filled, and all the nodes should be left-justified. 

What is heap sort? 

Heapsort is a popular and efficient sorting algorithm. The concept of heap sort is 

to eliminate the elements one by one from the heap part of the list, and then insert 

them into the sorted part of the list. 

Heapsort is the in-place sorting algorithm. 

Algorithm 

1. HeapSort(arr)   

2. BuildMaxHeap(arr)   

3. for i = length(arr) to 2   

4.     swap arr[1] with arr[i]   

5.         heap_size[arr] = heap_size[arr] ? 1   

6.         MaxHeapify(arr,1)   

7. End   

BuildMaxHeap(arr) 

1. BuildMaxHeap(arr)   

2.     heap_size(arr) = length(arr)   

3.     for i = length(arr)/2 to 1   

4. MaxHeapify(arr,i)   

5. End   

MaxHeapify(arr,i) 

1. MaxHeapify(arr,i)   

2. L = left(i)   

3. R = right(i)   

4. if L ? heap_size[arr] and arr[L] > arr[i]   

5. largest = L   

6. else   

7. largest = i   



8. if R ? heap_size[arr] and arr[R] > arr[largest]   

9. largest = R   

10. if largest != i   

11. swap arr[i] with arr[largest]   

12. MaxHeapify(arr,largest)   

13. End    

In heap sort, basically, there are two phases involved in the sorting of elements. 

By using the heap sort algorithm, they are as follows - 

o The first step includes the creation of a heap by adjusting the elements of 

the array. 

o After the creation of heap, now remove the root element of the heap 

repeatedly by shifting it to the end of the array, and then store the heap 

structure with the remaining elements. 

Now let's see the working of heap sort in detail by using an example. To 

understand it more clearly, let's take an unsorted array and try to sort it using heap 

sort. It will make the explanation clearer and easier. 

 

First, we have to construct a heap from the given array and convert it into max 

heap. 

 

After converting the given heap into max heap, the array elements are - 



 

Next, we have to delete the root element (89) from the max heap. To delete this 

node, we have to swap it with the last node, i.e. (11). After deleting the root 

element, we again have to heapify it to convert it into max heap. 

 

After swapping the array element 89 with 11, and converting the heap into max-

heap, the elements of array are - 

 

In the next step, again, we have to delete the root element (81) from the max heap. 

To delete this node, we have to swap it with the last node, i.e. (54). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 



After swapping the array element 81 with 54 and converting the heap into max-

heap, the elements of array are - 

 

In the next step, we have to delete the root element (76) from the max heap again. 

To delete this node, we have to swap it with the last node, i.e. (9). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 

After swapping the array element 76 with 9 and converting the heap into max-

heap, the elements of array are - 

 

In the next step, again we have to delete the root element (54) from the max heap. 

To delete this node, we have to swap it with the last node, i.e. (14). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 



After swapping the array element 54 with 14 and converting the heap into max-

heap, the elements of array are - 

 

In the next step, again we have to delete the root element (22) from the max heap. 

To delete this node, we have to swap it with the last node, i.e. (11). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 

After swapping the array element 22 with 11 and converting the heap into max-

heap, the elements of array are - 

 

In the next step, again we have to delete the root element (14) from the max heap. 

To delete this node, we have to swap it with the last node, i.e. (9). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 

After swapping the array element 14 with 9 and converting the heap into max-

heap, the elements of array are - 



 

In the next step, again we have to delete the root element (11) from the max heap. 

To delete this node, we have to swap it with the last node, i.e. (9). After deleting 

the root element, we again have to heapify it to convert it into max heap. 

 

After swapping the array element 11 with 9, the elements of array are - 

 

Now, heap has only one element left. After deleting it, heap will be empty. 

 

After completion of sorting, the array elements are - 

 

Now, the array is completely sorted. 

Heap sort complexity 

Now, let's see the time complexity of Heap sort in the best case, average case, 

and worst case. We will also see the space complexity of Heapsort. 

1. Time Complexity 

Case Time Complexity 



Best Case O(n logn) 

Average Case O(n log n) 

Worst Case O(n log n) 

o Best Case Complexity - It occurs when there is no sorting required, i.e. 

the array is already sorted. The best-case time complexity of heap sort 

is O(n logn). 

o Average Case Complexity - It occurs when the array elements are in 

jumbled order that is not properly ascending and not properly descending. 

The average case time complexity of heap sort is O(n log n). 

o Worst Case Complexity - It occurs when the array elements are required 

to be sorted in reverse order. That means suppose you have to sort the array 

elements in ascending order, but its elements are in descending order. The 

worst-case time complexity of heap sort is O(n log n). 

The time complexity of heap sort is O(n logn) in all three cases (best case, 

average case, and worst case). The height of a complete binary tree having n 

elements is logn. 

2. Space Complexity 

Space Complexity O(1) 

Stable N0 

o The space complexity of Heap sort is O(1). 

 


