
Searching Algorithms

Searching algorithms are methods or procedures used to find a specific item or

element within a collection of data. These algorithms are widely used in computer

science and are crucial for tasks like searching for a particular record in a database,

finding an element in a sorted list, or locating a file on a computer.

These are some commonly used searching algorithms:

1. Linear Search: In this simple algorithm, each element in the collection is

sequentially checked until the desired item is found, or the entire list is

traversed. It is suitable for small-sized or unsorted lists, but its time complexity

is O(n) in the worst case.

2. Binary Search: This algorithm is applicable only to sorted lists. It repeatedly

compares the middle element of the list with the target element and narrows

down the search range by half based on the comparison result. Binary search

has a time complexity of O(log n), making it highly efficient for large sorted lists.

3. Hashing: Hashing algorithms use a hash function to convert the search key into

an index or address of an array (known as a hash table). This allows for constant-

time retrieval of the desired item if the hash function is well-distributed and

collisions are handled appropriately. Common hashing techniques include

direct addressing, separate chaining, and open addressing.

4. Interpolation Search: Similar to binary search, interpolation search works on

sorted lists. Instead of always dividing the search range in half, interpolation

search uses the value of the target element and the values of the endpoints to

estimate its approximate position within the list. This estimation helps in quickly

narrowing down the search space. The time complexity of interpolation search

is typically O(log log n) on average if the data is uniformly distributed.

5. Tree-based Searching: Various tree data structures, such as binary search trees

(BST), AVL trees, or B-trees, can be used for efficient searching. These structures

impose an ordering on the elements and provide fast search, insertion, and

deletion operations. The time complexity of tree-based searching algorithms

depends on the height of the tree and can range from O(log n) to O(n) in the

worst case.

6. Ternary Search: Ternary search is an algorithm that operates on sorted lists

and repeatedly divides the search range into three parts instead of two, based

on two splitting points. It is a divide-and-conquer approach and has a time

complexity of O(log₃ n).

7. Jump Search: Jump search is an algorithm for sorted lists that works by

jumping ahead a fixed number of steps and then performing linear search in

the reduced subarray. It is useful for large sorted arrays and has a time

complexity of O(sqrt(n)), where n is the size of the array.

8. Exponential Search: Exponential search is a technique that combines elements

of binary search and linear search. It begins with a small range and doubles the

search range until the target element is within the range. It then performs a

binary search within that range. Exponential search is advantageous when the

target element is likely to be found near the beginning of the array and has a

time complexity of O(log n).

9. Fibonacci Search: Fibonacci search is a searching algorithm that uses Fibonacci

numbers to divide the search space. It works on sorted arrays and has a similar

approach to binary search, but instead of dividing the array into halves, it

divides it into two parts using Fibonacci numbers as indices. Fibonacci search

has a time complexity of O(log n).

10. Interpolation Search for Trees: This algorithm is an extension of interpolation

search designed for tree structures such as AVL trees or Red-Black trees. It

combines interpolation search principles with tree traversal to efficiently locate

elements in the tree based on their values. The time complexity depends on the

tree structure and can range from O(log n) to O(n) in the worst case.

11. Hash-based Searching (e.g., Bloom Filter): Hash-based searching algorithms

utilize hash functions and data structures like Bloom filters to determine

whether an element is present in a set or not. These algorithms provide

probabilistic answers, meaning they can occasionally have false positives

(indicating an element is present when it is not), but no false negatives (if an

element is not present, it will never claim it is). Bloom filters have a constant-

time complexity for search operations.

12. String Searching Algorithms: Searching algorithms specific to string data

include techniques like Knuth-Morris-Pratt (KMP) algorithm, Boyer-Moore

algorithm, Rabin-Karp algorithm, and many others. These algorithms optimize

the search for patterns within text or strings and are widely used in text

processing, pattern matching, and string matching tasks.

Implementation of Searching Algorithms

Linear Search:

Code in C++:

1. #include <iostream>

2. #include <vector>

3.

4. int linearSearch(const std::vector<int>& arr, int target) {

5. for (int i = 0; i < arr.size(); i++) {

6. if (arr[i] == target) {

7. return i; // Return the index of the element

8. }

9. }

10. return -1; // If the target is not found, return -1

11. }

12.

13. int main() {

14. std::vector<int> myVector = {4, 7, 2, 1, 9, 5};

15. int targetValue = 9;

16.

17. int result = linearSearch(myVector, targetValue);

18. if (result != -1) {

19. std::cout << "The target value " << targetValue << " is found at index " <

< result << "." << std::endl;

20. } else {

21. std::cout << "The target value is not present in the vector." << std::endl;

22. }

23.

24. return 0;

25. }

Output:

The target value 9 is found at index 4.

Code in C:

1. #include <stdio.h>

2.

3. int linearSearch(int arr[], int size, int target) {

4. for (int i = 0; i < size; i++) {

5. if (arr[i] == target) {

6. return i; // Return the index of the element

7. }

8. }

9. return -1; // If the target is not found, return -1

10. }

11.

12. int main() {

13. int myArray[] = {4, 7, 2, 1, 9, 5};

14. int targetValue = 9;

15. int size = sizeof(myArray) / sizeof(myArray[0]);

16.

17. int result = linearSearch(myArray, size, targetValue);

18. if (result != -1) {

19. printf("The target value %d is found at index %d.\n", targetValue, result);

20. } else {

21. printf("The target value is not present in the array.\n");

22. }

23.

24. return 0;

25. }

Output:

The target value 9 is found at index 4.

Explanation:

1. The linearSearch function takes three parameters: arr (the array), size (the size

of the array), and target (the value to be searched).

2. Inside the linearSearch function, a for loop is used to iterate through each

element of the array. The loop variable i is initialized to 0, and the loop continues

as long as i is less than the size of the array.

3. Inside the loop, each element of the array is compared with the target value

using the expression arr[i] == target. If a match is found, the function

immediately returns the index i, indicating the position of the element in the

array.

4. If the loop finishes without finding a match, the function returns -1, indicating

that the target value was not found in the array.

5. In the main function, an example array myArray is created and initialized with

values. The target value is set to 9.

6. The size of the array is calculated by dividing the total size of the array

(sizeof(myArray)) by the size of an individual element (sizeof(myArray[0])). This

ensures that the size of the array is correctly passed to the linearSearch function.

7. The linearSearch function is called with the array, size, and target value as

arguments. The return value is stored in the result variable.

8. If the result is not equal to -1, it means that the target value was found in the

array. In this case, a message is printed using printf() to indicate the index at

which the target value was found.

9. If the result is -1, it means that the target value was not found in the array. In

this case, a message is printed to indicate that the target value is not present in

the array.

10. The program terminates by returning 0 from the main function.

Binary Search:

Recursive Code

1. // Binary Search in C

2.

3. #include <stdio.h>

4.

5. int binarySearch(int array[], int x, int low, int high) {

6. if (high >= low) {

7. int mid = low + (high - low) / 2;

8.

9. // If found at mid, then return it

10. if (array[mid] == x)

11. return mid;

12.

13. // Search the left half

14. if (array[mid] > x)

15. return binarySearch(array, x, low, mid - 1);

16.

17. // Search the right half

18. return binarySearch(array, x, mid + 1, high);

19. }

20.

21. return -1;

22. }

23.

24. int main(void) {

25. int array[] = {3, 4, 5, 6, 7, 8, 9};

26. int n = sizeof(array) / sizeof(array[0]);

27. int x = 4;

28. int result = binarySearch(array, x, 0, n - 1);

29. if (result == -1)

30. printf("Not found");

31. else

32. printf("Element is found at index %d", result);

33. }

Output:

Element is found at index 1

Explanation:

o The binarySearch function takes an array, the element to search for (x), the lower

index (low), and the higher index (high) as parameters.

o It first checks if high is greater than or equal to low. If not, it means the element

was not found, and it returns -1.

o If high is greater than or equal to low, it calculates the middle index mid using

the formula low + (high - low) / 2.

o It then checks if the element at the middle index (array[mid]) is equal to x. If

they are equal, it means the element is found, and it returns the index mid.

o If array[mid] is greater than x, it means the element lies in the left half of the

array. In this case, the binarySearch function is called recursively with low

unchanged and high set to mid - 1.

o If array[mid] is less than x, it means the element lies in the right half of the array.

In this case, the binarySearch function is called recursively with low set to mid

+ 1 and high unchanged.

o If the element is not found after the recursive calls, the function returns -1.

o In the main function, an array {3, 4, 5, 6, 7, 8, 9} is defined, and the size of the

array n is calculated using the formula sizeof(array) / sizeof(array[0]).

o The element x to search for is set to 4.

o The binarySearch function is called with the array, x, and the range of indices 0

to n - 1.

o The returned result is stored in the result variable.

o Finally, the result is checked. If it is -1, it means the element was not found, and

"Not found" is printed. Otherwise, the index where the element was found is

printed as "Element is found at index result".

Iterative

1. #include <stdio.h>

2.

3. int binarySearch(int array[], int x, int low, int high) {

4. // Repeat until the pointers low and high meet each other

5. while (low <= high) {

6. int mid = low + (high - low) / 2;

7.

8. if (array[mid] == x)

9. return mid;

10.

11. if (array[mid] < x)

12. low = mid + 1;

13.

14. else

15. high = mid - 1;

16. }

17.

18. return -1;

19. }

20.

21. int main(void) {

22. int array[] = {3, 4, 5, 6, 7, 8, 9};

23. int n = sizeof(array) / sizeof(array[0]);

24. int x = 4;

25. int result = binarySearch(array, x, 0, n - 1);

26. if (result == -1)

27. printf("Not found");

28. else

29. printf("Element is found at index %d", result);

30. return 0;

31. }

Output:

Element is found at index 1

Explanation:

o The binarySearch function takes an array, the element to search for (x), the lower

index (low), and the higher index (high) as parameters.

o It uses a while loop that continues until the low pointer is less than or equal to

the high pointer.

o Inside the loop, it calculates the middle index mid using the formula low + (high

- low) / 2.

o It then checks if the element at the middle index (array[mid]) is equal to x. If

they are equal, it means the element is found, and it returns the index mid.

o If array[mid] is less than x, it means the element lies in the right half of the array.

In this case, the low pointer is updated to mid + 1.

o If array[mid] is greater than x, it means the element lies in the left half of the

array. In this case, the high pointer is updated to mid - 1.

o If the element is not found after the loop, it means the element is not present

in the array, and the function returns -1.

o In the main function, an array {3, 4, 5, 6, 7, 8, 9} is defined, and the size of the

array n is calculated using the formula sizeof(array) / sizeof(array[0]).

o The element x to search for is set to 4.

o The binarySearch function is called with the array, x, and the range of indices 0

to n - 1.

o The returned result is stored in the result variable.

o Finally, the result is checked. If it is -1, it means the element was not found, and

"Not found" is printed. Otherwise, the index where the element was found is

printed as "Element is found at index result".

Hashing

1. #include <stdio.h>

2. #include <stdlib.h>

3.

4. #define TABLE_SIZE 10

5.

6. struct Node {

7. int key;

8. int value;

9. struct Node* next;

10. };

11.

12. struct Node* table[TABLE_SIZE];

13.

14. int hash_function(int key) {

15. return key % TABLE_SIZE;

16. }

17.

18. void insert(int key, int value) {

19. int index = hash_function(key);

20.

21. struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

22. newNode->key = key;

23. newNode->value = value;

24. newNode->next = NULL;

25.

26. if (table[index] == NULL) {

27. table[index] = newNode;

28. } else {

29. struct Node* current = table[index];

30. while (current->next != NULL) {

31. current = current->next;

32. }

33. current->next = newNode;

34. }

35. }

36.

37. int search(int key) {

38. int index = hash_function(key);

39.

40. struct Node* current = table[index];

41. while (current != NULL) {

42. if (current->key == key) {

43. return current->value;

44. }

45. current = current->next;

46. }

47.

48. return -1; // Key not found

49. }

50.

51. int main() {

52. // Initialize the hash table

53. for (int i = 0; i < TABLE_SIZE; i++) {

54. table[i] = NULL;

55. }

56.

57. // Insert elements into the hash table

58. insert(5, 100);

59. insert(2, 200);

60. insert(7, 300);

61.

62. // Search for a key in the hash table

63. int searchKey = 2;

64. int result = search(searchKey);

65. if (result != -1) {

66. printf("Value for key %d: %d\n", searchKey, result);

67. } else {

68. printf("Key %d not found\n", searchKey);

69. }

70.

71. return 0;

72. }

Output:

Value for key 2: 200

Explanation:

1. The C implementation starts by including the necessary header files: stdio.h for

standard input/output operations and stdlib.h for memory allocation.

2. A constant TABLE_SIZE is defined to determine the size of the hash table array.

3. A struct Node is defined to represent a key-value pair. It has three members:

key, value, and next. The next member is a pointer to the next node in case of

collisions.

4. A global variable table is declared as an array of struct Node* to store the hash

table.

5. The hash_function function takes a key as input and returns the index in the

hash table array. It uses the modulo operator % with TABLE_SIZE to calculate

the index.

6. The insert function takes a key and value as input. It calculates the index using

the hash_function and inserts a new node containing the key-value pair into the

linked list at the calculated index.

7. The search function takes a key as input and returns the value associated with

the key if found in the hash table. It calculates the index using the hash_function

and traverses the linked list at the calculated index to search for the key.

8. The main function initializes the hash table, inserts elements into it, and

performs a search operation.

Code in Java:

1. import java.util.ArrayList;

2. import java.util.List;

3.

4. class Node {

5. int key;

6. int value;

7.

8. Node(int key, int value) {

9. this.key = key;

10. this.value = value;

11. }

12. }

13.

14. class HashTable {

15. private int size;

16. private List<List<Node>> table;

17.

18. HashTable(int size) {

19. this.size = size;

20. this.table = new ArrayList<>(size);

21. for (int i = 0; i < size; i++) {

22. table.add(new ArrayList<>());

23. }

24. }

25.

26. private int hashFunction(int key) {

27. return key % size;

28. }

29.

30. void insert(int key, int value) {

31. int index = hashFunction(key);

32. List<Node> list = table.get(index);

33. list.add(new Node(key, value));

34. }

35.

36. int search(int key) {

37. int index = hashFunction(key);

38. List<Node> list = table.get(index);

39. for (Node node : list) {

40. if (node.key == key) {

41. return node.value;

42. }

43. }

44. return -1; // Key not found

45. }

46. }

47.

48. public class Main {

49. public static void main(String[] args) {

50. // Initialize the hash table

51. int tableSize = 10;

52. HashTable hashTable = new HashTable(tableSize);

53.

54. // Insert elements into the hash table

55. hashTable.insert(5, 100);

56. hashTable.insert(2, 200);

57. hashTable.insert(7, 300);

58.

59. // Search for a key in the hash table

60. int searchKey = 2;

61. int result = hashTable.search(searchKey);

62. if (result != -1) {

63. System.out.println("Value for key " + searchKey + ": " + result);

64. } else {

65. System.out.println("Key " + searchKey + " not found");

66. }

67. }

68. }

Output:

Value for key 2: 200

Explanation:

1. The Java implementation defines a Node class with key and value fields to

represent a key-value pair.

2. The HashTable class encapsulates the hash table functionality.

3. The class has a constructor that takes the size of the hash table as input and

initializes an ArrayList of empty lists to represent the buckets.

4. The hashFunction method takes a key as input and returns the index in the hash

table array. It uses the division method (key % size) to calculate the index.

5. The insert method takes a key and value as input. It calculates the index using

the hashFunction and inserts a new Node object into the list at the calculated

index.

6. The search method takes a key as input and returns the value associated with

the key if found in the hash table. It calculates the index using the hashFunction

and iterates over the list at the calculated index to search for the key.

7. The main method creates an instance of HashTable, inserts elements into it, and

performs a search operation.

Interploation Search:

1. #include <stdio.h>

2.

3. int interpolationSearch(int arr[], int n, int target) {

4. int low = 0, high = n - 1;

5.

6. while (low <= high && target >= arr[low] && target <= arr[high]) {

7. if (low == high) {

8. if (arr[low] == target)

9. return low;

10. return -1;

11. }

12.

13. // Calculate the position using interpolation formula

14. int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (target - ar

r[low]));

15.

16. if (arr[pos] == target)

17. return pos;

18.

19. if (arr[pos] < target)

20. low = pos + 1;

21. else

22. high = pos - 1;

23. }

24.

25. return -1; // Element not found

26. }

27.

28. int main() {

29. int arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91};

30. int n = sizeof(arr) / sizeof(arr[0]);

31. int target = 16;

32.

33. int index = interpolationSearch(arr, n, target);

34.

35. if (index != -1)

36. printf("Element %d found at index %d\n", target, index);

37. else

38. printf("Element %d not found in the array\n", target);

39.

40. return 0;

41. }

Output:

Element 16 found at index 4

Explanation:

1. The interpolation search algorithm assumes that we have an input array in

sorted in ascending order.

2. The algorithm consists of two variables: They are low, which points to the first

index of the array, and high, initialized to the last index of the array.

3. The algorithm uses the target values arr[low] and arr[high] to calculate the

probable location of the target element in the array where the probability of

finding an element is high. It uses the projection formula:

pos = low + (((double) (high - low) / (arr[high] - arr[low])) * (value - arr[low])

The above given formula calculates the pos position as the weighted average

of the lower and upper indices, depending on the values of the corresponding

array elements. The objective is to calculate the location of the target detection.

4. The algorithm then compares the target value with arr[pos] to determine the

next step:

o If arr[pos] is equal to the given target value, then the algorithm searches

for the target element and returns pos.

o If arr[pos] is less than the given target value, the algorithm does not

create another pos + 1, because the target value is likely at the top of

the array.

o If arr[pos] is greater than the target value, the algorithm updates up at

pos - 1, since the target value is likely in the lower half of the array.

5. The algorithm repeats steps 3 and 4 until one of the following conditions is

satisfied:

The target element is found at position pos, in which case the algorithm returns

the position.

The low value is greater than high, indicating that the target is not in the system.

In this case, the algorithm returns -1 indicating that the element was not found.

6. The main function in the example demonstrates the usage of the

interpolationSearch function. It initializes an array, its size, and a target value. It

then calls the interpolationSearch function to search for the target value in the

array.

7. Finally, based on the returned index, the main function prints a corresponding

message indicating whether the target element was found or not.

Code in Java:

1. public class InterpolationSearch {

2. public static int interpolationSearch(int[] arr, int target) {

3. int low = 0;

4. int high = arr.length - 1;

5.

6. while (low <= high && target >= arr[low] && target <= arr[high]) {

7. if (low == high) {

8. if (arr[low] == target)

9. return low;

10. return -1;

11. }

12.

13. // Calculate the position using interpolation formula

14. int pos = low + (((target - arr[low]) * (high - low)) / (arr[high] - arr[low])

);

15.

16. if (arr[pos] == target)

17. return pos;

18.

19. if (arr[pos] < target)

20. low = pos + 1;

21. else

22. high = pos - 1;

23. }

24.

25. return -1; // Element not found

26. }

27.

28. public static void main(String[] args) {

29. int[] arr = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91};

30. int target = 16;

31.

32. int index = interpolationSearch(arr, target);

33.

34. if (index != -1)

35. System.out.println("Element " + target + " found at index " + index);

36. else

37. System.out.println("Element " + target + " not found in the array");

38. }

39. }

Output:

Element 16 found at index 4

Tree based searching:

Depth-First Search (DFS): DFS is a recursive search technique that explores the tree

by going as deep as possible before backtracking. In the case of a binary tree, there

are three common variants of DFS:

o Pre-order traversal: Visit the current node, then recursively visit the left

subtree, and finally the right subtree.

o In-order traversal: Recursively visit the left subtree, visit the current node, and

then recursively visit the right subtree. In a binary search tree, this traversal visits

the nodes in ascending order.

o Post-order traversal: Recursively visit the left subtree, then the right subtree,

and finally visit the current node.

Breadth-First Search (BFS): BFS explores the tree level by level, visiting all the nodes

at the same depth before moving to the next level. It uses a queue data structure to

keep track of the nodes to visit. BFS ensures that nodes closer to the root are visited

before deeper nodes.

DFS:

1. #include <stdio.h>

2. #include <stdbool.h>

3.

4. #define MAX_NODES 100

5.

6. // Structure to represent a graph node

7. struct Node {

8. int data;

9. struct Node* left;

10. struct Node* right;

11. };

12.

13. // Function to create a new node

14. struct Node* createNode(int data) {

15. struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

16. newNode->data = data;

17. newNode->left = NULL;

18. newNode->right = NULL;

19. return newNode;

20. }

21.

22. // Depth-First Search (DFS) recursive function

23. void DFS(struct Node* node) {

24. if (node == NULL) {

25. return;

26. }

27. printf("%d ", node->data); // Process the current node

28. DFS(node->left); // Recursively visit the left subtree

29. DFS(node->right); // Recursively visit the right subtree

30. }

31.

32. int main() {

33. // Create a sample binary tree

34. struct Node* root = createNode(1);

35. root->left = createNode(2);

36. root->right = createNode(3);

37. root->left->left = createNode(4);

38. root->left->right = createNode(5);

39.

40. printf("Depth-First Traversal (DFS): ");

41. DFS(root);

42.

43. return 0;

44. }

Output:

Depth-First Traversal (DFS): 1 2 4 5 3

Explanation:

o The necessary header files stdio.h and stdbool.h are included, which provide

input/output functionality and support for boolean values, respectively.

o The constant MAX_NODES is defined with a value of 100, representing the

maximum number of nodes in the binary tree. This value is not currently used

in the code.

o The structure Node is defined to represent a node in the binary tree. It contains

an integer data to store the node's value, and two pointers left and right

pointing to the left and right child nodes, respectively.

o The function createNode is a utility function that takes an integer data as input

and creates a new node with the given data value. It allocates memory for the

new node using malloc and initializes the left and right pointers to NULL. The

function returns a pointer to the newly created node.

o The function DFS is the recursive implementation of Depth-First Search. It takes

a pointer to a node as input and performs the DFS traversal. The base case is

when the current node is NULL, in which case the function simply returns.

Otherwise, it processes the current node by printing its data value using printf.

Then, it recursively calls DFS on the left subtree (node->left) and the right

subtree (node->right).

o In the main function, a sample binary tree is created. The root node is created

using createNode with a data value of 1. Two child nodes are created for the

root node with data values 2 and 3, respectively. Further, two child nodes are

created for the left child of the root node with data values 4 and 5, respectively.

o Finally, the DFS traversal is performed on the binary tree starting from the root

node by calling DFS(root). The values of the nodes are printed in the depth-first

order.

BFS:

1. #include <stdio.h>

2. #include <stdbool.h>

3.

4. #define MAX_NODES 100

5.

6. // Structure to represent a graph node

7. struct Node {

8. int data;

9. struct Node* left;

10. struct Node* right;

11. };

12.

13. // Structure to represent a queue

14. struct Queue {

15. struct Node* items[MAX_NODES];

16. int front;

17. int rear;

18. };

19.

20. // Function to create a new node

21. struct Node* createNode(int data) {

22. struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

23. newNode->data = data;

24. newNode->left = NULL;

25. newNode->right = NULL;

26. return newNode;

27. }

28.

29. // Function to create an empty queue

30. struct Queue* createQueue() {

31. struct Queue* queue = (struct Queue*)malloc(sizeof(struct Queue));

32. queue->front = -1;

33. queue->rear = -1;

34. return queue;

35. }

36.

37. // Function to check if the queue is empty

38. bool isEmpty(struct Queue* queue) {

39. return queue->rear == -1;

40. }

41.

42. // Function to enqueue an item

43. void enqueue(struct Queue* queue, struct Node* item) {

44. if (queue->rear == MAX_NODES - 1) {

45. printf("Queue Overflow!\n");

46. return;

47. }

48. if (queue->front == -1) {

49. queue->front = 0;

50. }

51. queue->rear++;

52. queue->items[queue->rear] = item;

53. }

54.

55. // Function to dequeue an item

56. struct Node* dequeue(struct Queue* queue) {

57. if (isEmpty(queue)) {

58. printf("Queue Underflow!\n");

59. return NULL;

60. }

61. struct Node* item = queue->items[queue->front];

62. queue->front++;

63. if (queue->front > queue->rear) {

64. queue->front = queue->rear = -1;

65. }

66. return item;

67. }

68.

69. // Breadth-First Search (BFS) iterative function

70. void BFS(struct Node* root) {

71. if (root == NULL) {

72. return;

73. }

74. struct Queue* queue = createQueue();

75. enqueue(queue, root); // Enqueue the root node

76.

77. printf("Breadth-First Traversal (BFS): ");

78. while (!isEmpty(queue)) {

79. struct Node* node = dequeue(queue);

80. printf("%d ", node->data); // Process the current node

81.

82. // Enqueue the left and right child nodes if they exist

83. if (node->left != NULL) {

84. enqueue(queue, node->left);

85. }

86. if (node->right != NULL) {

87. enqueue(queue, node->right);

88. }

89. }

90. printf("\n");

91. }

92.

93. int main() {

94. // Create a sample binary tree

95. struct Node* root = createNode(1);

96. root->left = createNode(2);

97. root->right = createNode(3);

98. root->left->left = createNode(4);

99. root->left->right = createNode(5);

100.

101. BFS(root);

102.

103. return 0;

104. }

Output:

Breadth-First Traversal (BFS): 1 2 3 4 5

Explanation:

o The necessary header files stdio.h and stdbool.h are included, which provide

input/output functionality and support for boolean values, respectively.

o The constant MAX_NODES is defined with a value of 100, representing the

maximum number of nodes in the binary tree. This value is used to define the

size of the queue in the Queue structure.

o The structure Node is defined to represent a node in the binary tree. It contains

an integer data to store the node's value, and two pointers left and right

pointing to the left and right child nodes, respectively.

o The structure Queue is defined to represent a queue that will be used for BFS.

It contains an array items of Node pointers to store the nodes in the queue, and

two integers front and rear to keep track of the front and rear indices of the

queue.

o The function createNode is a utility function that takes an integer data as input

and creates a new node with the given data value. It allocates memory for the

new node using malloc and initializes the left and right pointers to NULL. The

function returns a pointer to the newly created node.

o The function createQueue creates an empty queue by allocating memory for

the Queue structure and initializing the front and rear indices to -1.

o The function isEmpty checks if the queue is empty by checking if the rear index

is -1. If it is, the function returns true, indicating that the queue is empty.

o The function enqueue adds a node to the queue. It first checks if the queue is

already full (rear index is equal to MAX_NODES - 1). If so, it prints a "Queue

Overflow!" message and returns. Otherwise, it increments the rear index, adds

the node to the items array at the new rear index, and updates the front index

if it was -1 (indicating an empty queue).

o The function dequeue removes and returns a node from the queue. It first

checks if the queue is empty by calling isEmpty. If the queue is empty, it prints

a "Queue Underflow!" message and returns NULL. Otherwise, it retrieves the

node from the front index, increments the front index, and checks if the front

index has surpassed the rear index. If so, it sets both the front and rear indices

to -1, indicating an empty queue. Finally, it returns the dequeued node.

o The function BFS is the iterative implementation of Breadth-First Search. It takes

a pointer to the root node of the binary tree as input. It starts by creating a

queue using createQueue and enqueues the root node. Then, it enters a loop

where it dequeues a node from the queue, processes the node by printing its

data value using printf, and enqueues its left and right child nodes if they exist.

The loop continues until the queue becomes empty, i.e., there are no more

nodes to process.

o In the main function, a sample binary tree is created. The root node is created

using createNode with a data value of 1. Two child nodes are created for the

root node with data values 2 and 3, respectively. Further, two child nodes are

created for the left child of the root node with data values 4 and 5, respectively.

o Finally, the BFS traversal is performed on the binary tree starting from the root

node by calling BFS(root). The values of the nodes are printed in the breadth-

first order.

Ternary Search:

1. #include <stdio.h>

2.

3. // Function to perform ternary search

4. int ternarySearch(int arr[], int left, int right, int key)

5. {

6. if (right >= left) {

7. int mid1 = left + (right - left) / 3;

8. int mid2 = right - (right - left) / 3;

9.

10. // If the key is present at any of the mid points

11. if (arr[mid1] == key)

12. return mid1;

13.

14. if (arr[mid2] == key)

15. return mid2;

16.

17. // If the key is smaller than the mid1 element, recur on the left segment

18. if (key < arr[mid1])

19. return ternarySearch(arr, left, mid1 - 1, key);

20.

21. // If the key is greater than the mid2 element, recur on the right segment

22. if (key > arr[mid2])

23. return ternarySearch(arr, mid2 + 1, right, key);

24.

25. // If the key is between mid1 and mid2, recur on the middle segment

26. return ternarySearch(arr, mid1 + 1, mid2 - 1, key);

27. }

28.

29. // Key not found

30. return -1;

31. }

32.

33. // Test the ternarySearch function

34. int main()

35. {

36. int arr[] = { 2, 5, 8, 12, 16, 23, 38, 56, 72, 91 };

37. int n = sizeof(arr) / sizeof(arr[0]);

38. int key = 23;

39. int result = ternarySearch(arr, 0, n - 1, key);

40. if (result == -1)

41. printf("Element not found in the array.\n");

42. else

43. printf("Element found at index %d.\n", result);

44.

45. return 0;

46. }

Output:

Element found at index 5.

Explanation:

o In this example, we have an array arr containing some elements, and we want

to search for a key value (in this case, 23). The ternarySearch function takes the

array, the left and right indices of the current segment, and the key to search

for.

o The function recursively divides the array into three segments: mid1 = left +

(right - left) / 3 and mid2 = right - (right - left) / 3. It checks if the key is equal

to arr[mid1] or arr[mid2]. If either condition is true, it returns the respective

index.

o If the key is smaller than arr[mid1], the function recurs on the left segment (left

to mid1 - 1). If the key is greater than arr[mid2], the function recurs on the right

segment (mid2 + 1 to right). Otherwise, if the key is between arr[mid1] and

arr[mid2], the function recurs on the middle segment (mid1 + 1 to mid2 - 1).

o If the function doesn't find the key in the array, it returns -1. The main function

calls ternarySearch with the appropriate arguments and displays the result

accordingly.

Exponential Search

1. #include <stdio.h>

2.

3. // Binary search implementation

4. int binarySearch(int arr[], int left, int right, int key)

5. {

6. while (left <= right) {

7. int mid = left + (right - left) / 2;

8.

9. if (arr[mid] == key)

10. return mid;

11. else if (arr[mid] < key)

12. left = mid + 1;

13. else

14. right = mid - 1;

15. }

16.

17. return -1; // Key not found

18. }

19.

20. // Exponential search implementation

21. int exponentialSearch(int arr[], int size, int key)

22. {

23. // If key is found at index 0

24. if (arr[0] == key)

25. return 0;

26.

27. // Find the range for binary search

28. int i = 1;

29. while (i < size && arr[i] <= key)

30. i *= 2;

31.

32. // Perform binary search within the identified range

33. return binarySearch(arr, i / 2, (i < size) ? i : size - 1, key);

34. }

35.

36. // Test the exponentialSearch function

37. int main()

38. {

39. int arr[] = { 2, 5, 8, 12, 16, 23, 38, 56, 72, 91 };

40. int n = sizeof(arr) / sizeof(arr[0]);

41. int key = 23;

42. int result = exponentialSearch(arr, n, key);

43. if (result == -1)

44. printf("Element not found in the array.\n");

45. else

46. printf("Element found at index %d.\n", result);

47.

48. return 0;

49. }

Output:

Element found at index 5.

Explanation:

o We have an array arr containing some elements, and we want to search for a

key value (in this case, 23). The exponentialSearch function takes the array, the

size of the array, and the key to search for.

o The function starts by checking if the key is present at index 0. If so, it

immediately returns 0. Otherwise, it determines the range for the binary search

by doubling the index i until either the end of the array is reached or arr[i]

becomes greater than the key.

o After identifying the range, the function calls the binarySearch function to

perform a binary search within that range. The binarySearch function

implements the standard binary search algorithm and returns the index of the

key if found, or -1 if not found.

o The main function calls exponentialSearch with the appropriate arguments and

displays the result accordingly.

Code in Java:

1. public class ExponentialSearch {

2. public static int exponentialSearch(int[] arr, int target) {

3. if (arr[0] == target) {

4. return 0;

5. }

6.

7. int n = arr.length;

8. int bound = 1;

9. while (bound < n && arr[bound] <= target) {

10. bound *= 2;

11. }

12.

13. return binarySearch(arr, target, bound / 2, Math.min(bound, n - 1));

14. }

15.

16. private static int binarySearch(int[] arr, int target, int left, int right) {

17. if (left > right) {

18. return -1;

19. }

20.

21. int mid = left + (right - left) / 2;

22. if (arr[mid] == target) {

23. return mid;

24. } else if (arr[mid] > target) {

25. return binarySearch(arr, target, left, mid - 1);

26. } else {

27. return binarySearch(arr, target, mid + 1, right);

28. }

29. }

30.

31. public static void main(String[] args) {

32. int[] arr = {2, 4, 6, 8, 10, 12, 14, 16};

33. int target = 10;

34. int index = exponentialSearch(arr, target);

35. if (index != -1) {

36. System.out.println("Element found at index " + index);

37. } else {

38. System.out.println("Element not found");

39. }

40. }

41. }

Output:

Element found at index 4

Explanation:

1. The exponentialSearch method takes an array arr and a target value target as

input and returns the index of the target value in the array. If the target value is

not found, it returns -1.

2. The method starts by checking if the first element of the array (arr[0]) is equal

to the target value. If it is, the method returns 0 since the target is found at the

first index.

3. If the target value is not found at the first index, the method proceeds with the

exponential search algorithm. It initializes a variable bound to 1. This variable

represents the upper bound of the search range.

4. The algorithm then enters a loop that doubles the bound value until either the

bound exceeds the array size (n) or the element at the bound index is greater

than the target value. This loop narrows down the search range exponentially.

5. After determining the bound, the method calls the binarySearch method to

perform a binary search within the determined search range. It passes the array,

target value, lower bound (bound / 2), and upper bound (Math.min(bound, n -

1)) to the binarySearch method.

6. The binarySearch method is a recursive implementation of the binary search

algorithm. It takes the array, target value, left index, and right index as

parameters.

7. In the binarySearch method, it checks if the left index is greater than the right

index. If it is, it means the target value is not present in the search range, so the

method returns -1.

8. Otherwise, it calculates the middle index (mid) as the average of the left and

right indices.

9. It then compares the element at the mid index with the target value. If they are

equal, the method returns the mid index since the target value is found.

10. If the element at the mid index is greater than the target value, it recursively

calls the binarySearch method with the left part of the search range (left to mid

- 1).

11. If the element at the mid index is smaller than the target value, it recursively

calls the binarySearch method with the right part of the search range (mid + 1

to right).

12. The recursion continues until the target value is found or the search range is

narrowed down to the point where the left index becomes greater than the right

index.

13. In the main method, an example array arr is created with sorted elements. The

target value is set to 10.

14. The exponentialSearch method is called with the array arr and the target value.

The returned index is stored in the index variable.

15. Finally, the index variable is checked. If it is not -1, it means the target value was

found, and the corresponding message is displayed. Otherwise, if the index is -

1, it means the target value was not found, and the appropriate message is

displayed.

Fibonnaci Search

Code in C:

1. #include <stdio.h>

2.

3. int fibonacciSearch(int arr[], int n, int key)

4. {

5. // Initialize Fibonacci numbers

6. int fib2 = 0; // (m-2)th Fibonacci number

7. int fib1 = 1; // (m-1)th Fibonacci number

8. int fib = fib2 + fib1; // mth Fibonacci number

9.

10. // Find the smallest Fibonacci number greater than or equal to n

11. while (fib < n) {

12. fib2 = fib1;

13. fib1 = fib;

14. fib = fib2 + fib1;

15. }

16.

17. // Marks the eliminated range from front

18. int offset = -1;

19.

20. // Perform a comparison-based search

21. while (fib > 1) {

22. // Check if fib2 is a valid index

23. int i = (offset + fib2 < n) ? offset + fib2 : n - 1;

24.

25. // If key is greater than the value at index fib2, cut the subarray from offs

et to i

26. if (arr[i] < key) {

27. fib = fib1;

28. fib1 = fib2;

29. fib2 = fib - fib1;

30. offset = i;

31. }

32. // If key is smaller than the value at index fib2, cut the subarray after i+1

33. else if (arr[i] > key) {

34. fib = fib2;

35. fib1 = fib1 - fib2;

36. fib2 = fib - fib1;

37. }

38. // If the key is found

39. else {

40. return i;

41. }

42. }

43.

44. // Compare the last element with the key

45. if (fib1 == 1 && arr[offset + 1] == key) {

46. return offset + 1;

47. }

48.

49. // Element not found

50. return -1;

51. }

52.

53. int main()

54. {

55. int arr[] = { 2, 5, 9, 13, 18, 21, 28, 35, 40 };

56. int n = sizeof(arr) / sizeof(arr[0]);

57. int key = 18;

58. int index = fibonacciSearch(arr, n, key);

59.

60. if (index >= 0) {

61. printf("Element found at index %d\n", index);

62. }

63. else {

64. printf("Element not found\n");

65. }

66.

67. return 0;

68. }

Output:

Element found at index 4.

