
Pseudocode

We shall now see the pseudocodes for merge sort functions. As
our algorithms point out two main functions − divide & merge.

procedure mergesort(var a as array)

 if (n == 1) return a

 var l1 as array = a[0] ... a[n/2]

 var l2 as array = a[n/2+1] ... a[n]

 l1 = mergesort(l1)

 l2 = mergesort(l2)

 return merge(l1, l2)

end procedure

procedure merge(var a as array, var b as array)

 var c as array

 while (a and b have elements)

 if (a[0] > b[0])

 add b[0] to the end of c

 remove b[0] from b

 else

 add a[0] to the end of c

 remove a[0] from a

 end if

 end while

 while (a has elements)

 add a[0] to the end of c

 remove a[0] from a

 end while

 while (b has elements)

 add b[0] to the end of c

 remove b[0] from b

 end while

 return c

end procedure

Bubble Sort is the simplest sorting algorithm that works by repeatedly
swapping the adjacent elements if they are in the wrong order. This algorithm

https://www.geeksforgeeks.org/sorting-algorithms/

is not suitable for large data sets as its average and worst-case time
complexity is quite high.
Bubble Sort Algorithm
In Bubble Sort algorithm,

• traverse from left and compare adjacent elements and the higher
one is placed at right side.

• In this way, the largest element is moved to the rightmost end at
first.

• This process is then continued to find the second largest and place
it and so on until the data is sorted.

Algorithm

In the algorithm given below, suppose arr is an array of n elements. The

assumed swap function in the algorithm will swap the values of given array elements.

1. begin BubbleSort(arr)

2. for all array elements

3. if arr[i] > arr[i+1]

4. swap(arr[i], arr[i+1])

5. end if

6. end for

7. return arr

8. end BubbleSort

Let the elements of array are -

Sorting will start from the initial two elements. Let compare them to check which is

greater.

Here, 32 is greater than 13 (32 > 13), so it is already sorted. Now, compare 32 with 26.

Here, 26 is smaller than 36. So, swapping is required. After swapping new array will

look like -

Now, compare 32 and 35.

Here, 35 is greater than 32. So, there is no swapping required as they are already

sorted.

Now, the comparison will be in between 35 and 10.

Here, 10 is smaller than 35 that are not sorted. So, swapping is required. Now, we reach

at the end of the array. After first pass, the array will be -

Now, move to the second iteration.

