An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

RTMENT OF INFORMATION TECHNOLOGY

19CSB302 – COMPUTER NETWORKS

III YEAR V SEM

IT 2 – DATA LINK LAYER AND MEDIA ACCESS

TOPIC 12 – Ethernet (IEEE 802.3)

- 85, the Computer Society of the IEEE started a project,
- ect 802, to set standards to enable intercommuni
- ng equipment from a variety of manufacturers. Project
- y of specifying functions of the physical layer and th ayer of major LAN protocols.

LLC: Logical link control MAC: Media access control

	Upper layers			layers		
				LL	С	
	Data link layer		Ethernet MAC	Token Ring MAC	Token Bus MAC	••
	Physical layer		Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	••
Tra	nsmission mediur	n) ()	Transmission medium			
OSI or Internet model			IEEE Standard			

Standard Ethernet

riginal Ethernet was created in 1976 at Xerox's Pale och Center (PARC). Since then, it has gone through tions. We briefly discuss the Standard (or tradit et in this section.

- mble: 56 bits of alternating 1s and 0s.
- Start frame delimiter, flag (10101011)

eamble	SFD	Destination address	Source address	Length or type	Data and padding	
bytes	1 byte	6 bytes	6 bytes	2 bytes		2
Physical I heade	ayer r					

Frame length: Minimum: 64 bytes (512 bits) Maximum: 1518 bytes (12,144 bits)

06:01:02:01:2C:4B

6 bytes = 12 hex digits = 48 bits

The least significant bit of the first byte defines the type of address. If the bit is 0, the address is unicast; otherwise, it is multicast.

The broadcast destination address is a special case of the multicast address in which all bits are 1s.

плитри

he type of the following destination addresses: :10:21:10:1A b. 47:20:1B:2E:08:EE FF:FF:FF:FF

he type of the address, we need to look at the second mal digit from the left. If it is even, the address is unicas d, the address is multicast. If all digits are F's, the addre cast. Therefore, we have the following: s a unicast address because A in binary is 1010. s a multicast address because 7 in binary is 0111. s a broadcast address because all digits are F's.

implementation

L

10Base-F hub

Characteristics	10Base5	10Base2	10Base-T	10Base-F
edia	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
aximum length	500 m	185 m	100 m	2000 m
ne encoding	Manchester	Manchester	Manchester	Manchester

T

-Mbps Standard Ethernet has gone through several c moving to the higher data rates. These changes a the road to the evolution of the Ethernet to k ible with other high-data-rate LANs.

Bridged Ethernet

- Switched Ethernet
- **Full-Duplex Ethernet**

network

a. Without bridging

b. With bridging

et was designed to compete with LAN protocols suc per Channel. IEEE created Fast Ethernet under the r t Ethernet is backward-compatible with Standard Ethe ansmit data 10 times faster at a rate of 100 Mbps.

naracteristics	100Base-TX	100Base-FX	100Base-T4
	Cat 5 UTP or STP	Fiber	Cat 4 UTP
er of wires	2	2	4
num length	100 m	100 m	100 m
encoding	4B/5B	4B/5B	
ncoding	MLT-3	NRZ-I	8B/6T

T

J

leed for an even higher data rate resulted in the desig igabit Ethernet protocol (1000 Mbps). The IEEE commi the standard 802.3z.

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
dia	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
mber of wires	2	2	2	4
ximum length	550 m	5000 m	25 m	100 m
ock encoding	8B/10B	8B/10B	8B/10B	
e encoding	NRZ	NRZ	NRZ	4D-PAM5

Characteristics	10GBase-S	10GBase-L	10GBase-E
edia	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
aximum length	300 m	10 km	40 km

- ernet frame consists of _____
- AC address
- **o** address
- efault mask
- etwork address
- it is start frame delimeter (SFD) in ethernet frame?
- 0101010
- 0101011
- 000000
- 1111111
- Caddress is of ____
- 4 bits
- 6 bits
-) hite

