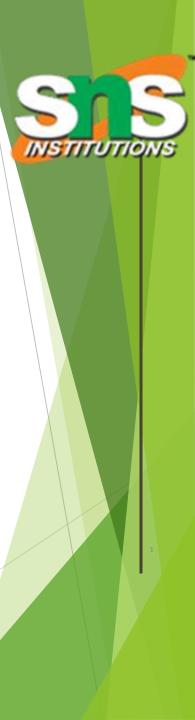


SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution


Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

BLOCK CHAIN AND CRYPTOCURRENCY IV YEAR - VII SEM

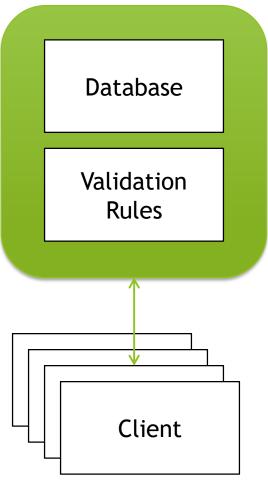
UNIT 5 - CRYPTO CURRENCY REGULATION

CRYPTO CURRENCY REGULATION

CRYPTO CURRENCY REGULATION

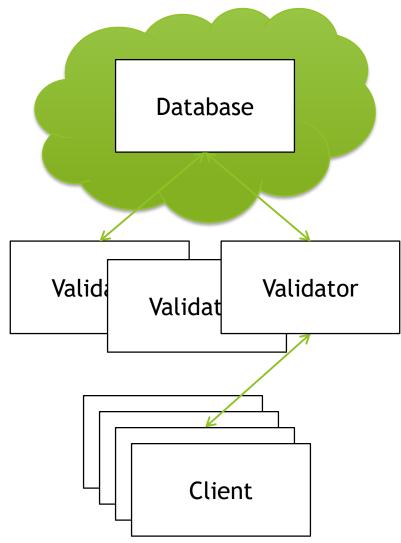
Unit 5/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

2



- Get to a technical understanding of:
 - Blockchains
 - Bitcoin
 - Smart contracts
- Why they are important and how cryptography enables these mechanisms

Note: This will be somewhat BTC heavy, but most rules apply to private chains.

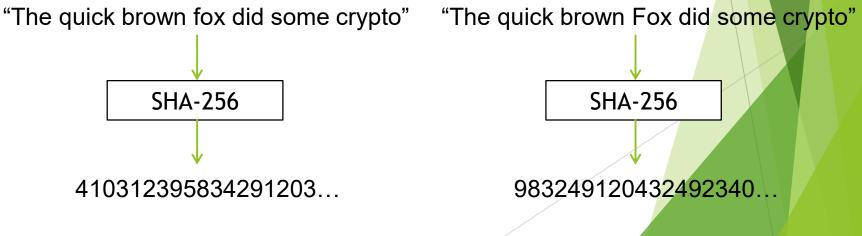

What do blockchains replace?

- Access protected writes to an authoritative database
- Transactions, timestamping, contracts, etc.

What do blockchains replace?

- Authoritative access control replaced with distributed consensus
- Database state dependent upon majority agreement of update validity

- Distributed consensus can allow:
 - Distrustful parties to maintain clean state
 - Completely unambiguous rules about validity
 - Removing authentication and identity as essential
 - Perhaps solves other problems also....



Welcome to Cryptoland

- Ugh. Do I *have* to learn all this detail?
- Yes. The laws of crypto are the laws of blockchains and bitcoin. Not understanding this will lead to bad intuitions about what this stuff can and cannot do.
- Luckily, only need to understand two laws of cryptography (and believe that people are motivated by incentives, I guess)
- We'll do this by building increasingly complex games that simulate parts of bitcoin and blockchains.

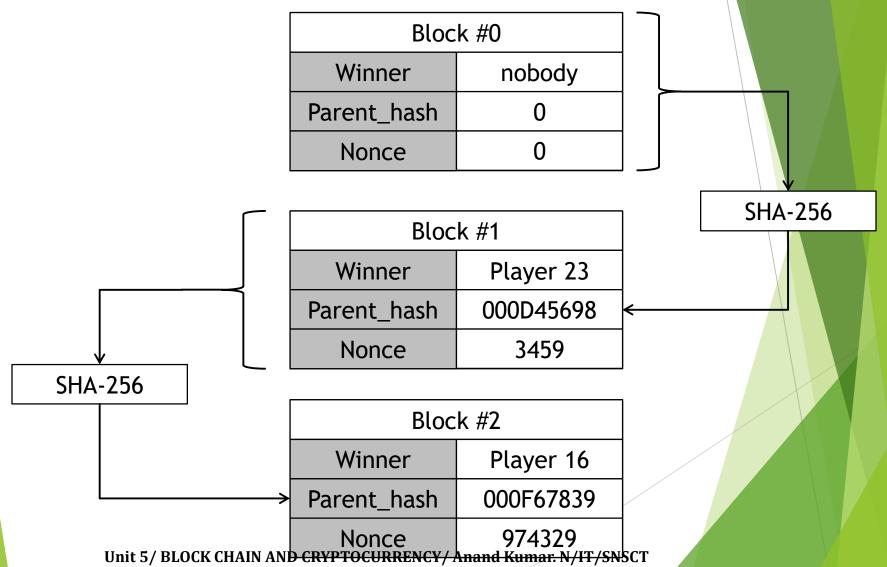
- A hash function (like SHA-256) takes a block of data in, and produces an effectively random fixed size integer.
- Any change to the input randomizes it

Hash-based Proof of Work

- Can't compute an input from an output
- To find a hash with N zeros at the start of the input, requires 2^N computations...proves computational work
- If we hash an incrementing "nonce" as the hash input, we can go looking for zeros:

in 3e-05 seconds, nonce = 0 yielded 0 zeros. value = 4c8f1205f49e70248939df9c7b704ace62c2245aba9e8164in 0.000138 seconds, nonce = 12 yielded 1 zeros. value = 05017256be77ad2985b36e75e486af325a620a9f29cin 0.000482 seconds, nonce = 112 yielded 2 zeros. value = 00ae7e0956382f55567d0ed9311cfd41dd2cf5f0a713in 0.014505 seconds, nonce = 3728 yielded 3 zeros. value = 000b5a6cfc0f076cd81ed3a60682063887cf055e47in 0.595024 seconds, nonce = 181747 yielded 4 zeros. value = 0000af058b74703b55e27437b89b1ebcc46f45ccin 3.491151 seconds, nonce = 1037701 yielded 5 zeros. value = 00000e55bd0d2027f3024c378e0cc511548c947in 32.006105 seconds, nonce = 9913520 yielded 6 zeros. value = 00000077a77854ee39dc0dc996dea72dad887in 590.89462 seconds, nonce = 1424462909 yielded 8 zeros. value = 00000000225060b16117b23dbea9ce6be8667

We can now make this into a distributed "gameBlock CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT



Game #1 - The Chain Race

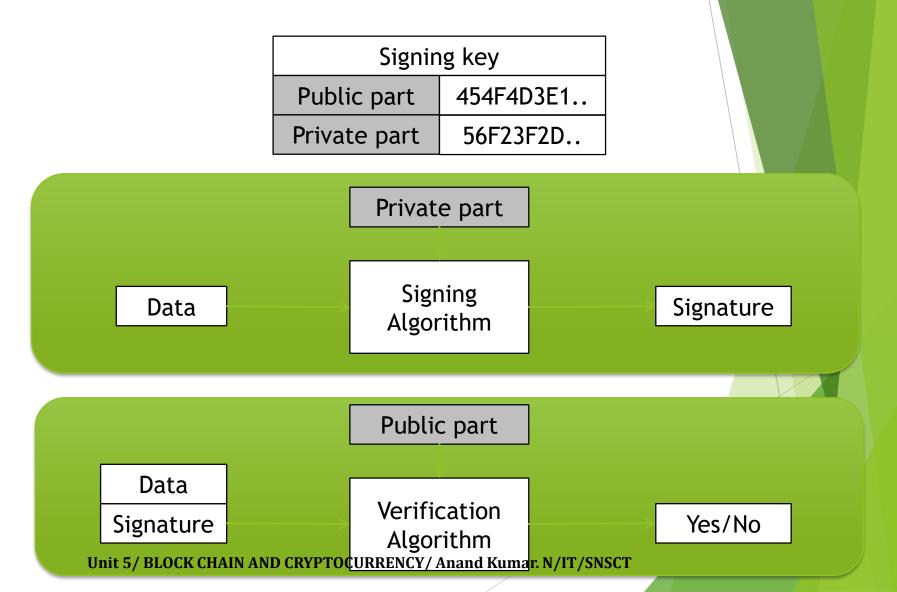
- A parameter N sets the difficulty of the game
- Players get a list of blocks, with:
 - A block number
 - A winner number
 - A nonce value
 - A hash of the previous block
 - A hash of the current block with N zeros
- Players accumulate points by creating blocks
 - Hash the previous block
 - Find a hash of the new block with enough zeros
 - They then transmit this block to everyone

Game #1 - The Chain Race

- The algorithm to make a new block:
- 1. Verify the hashes of all the previous blocks
- 2. Build a new block with a random nonce
- 3. Hash the new block. Does it have N zeros?
 - No? Go back to Step 2
 - Yes? Send your new block to everyone!
- Note that as a result of step #1, you can find out how many points anyone has by counting how many blocks they have won

How hard is the game?

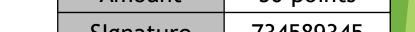
- For N zeros, because the SHA-256 output is effectively random, getting zero bits = same as flipping a coin and getting N heads in a row
- For N zeros, have to try $2^{N}/2$ nonces...
 - N=1 Try 1 nonce
 - ▶ N = 16 ... Try 32768 nonces
 - ▶ N = 32 ... Try 2 billion nonces
- Winning a block proves the player did work



What about cheaters?

- One way to cheat: make up a fake hash!
- What happens then?
 - Step 1 in the algorithm will fail for all the other players.
 - Other players will not use your block, making it not part of the chain

Ingredient #2: Signatures

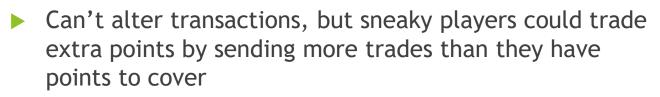

Make player ID = public key

We can now make trades by signing messages and sending them to everyone

Signed trades are:

- Unalterable
- Verifiable by anyone •
- From key to key, not tied to a • "real" identity

Trade #8423			
From	Public_key1		
То	Public_key2		
Amount	50 points		
SIgnature	345349354		
Trade	#8424		
From	Public_key2		
То	Public_key3		
Amount	50 points		
SIgnature	734589345		



Game #2 - The Race with

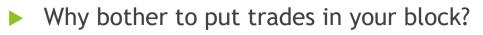
		_		
Block #0				
Winner Key	nobody		Trade	
Parent_hash	0		II due	
	0		From	
Nonce	0		То	
	/	l	Amount	
Block #1			SIgnature	
Winner Key	045F45F		5151142412	
Parent_hash	000D45698		Trade	
Nonce	3459		From	
		1	То	
Block #2			A	
Winner Key	8234DB4		Amount	
			SIgnature	
Parent_hash	000F67839			
Nonce Unit 5/ BLOCK C	3459 HAIN AND CRYPTOCUI	RENCY/ Anand	l Kumar. N/IT/SNSCT	

Trade #8423			
From	Public_key1		
То	Public_key2		
Amount	50 points		
SIgnature	345349354		
Trade #8424			
Trade	#8424		
Trade From	#8424 Public_key2		
From	Public_key2		
From	Public_key2 Public_key3		

- "Overtrading" not resolvable, because don't have an absolute unalterable source of time
- Let's fix this in game #3...
 - Critical insight: Put the trades in the blocks.

Game #3 - No-cheating Social

Block #2			
6B34C03			
004539A3F			
54695			
Trade #5			
Public_key1			
Public_key2			
50 points			
345349354			


Trade #6

Game #3 is magic...

- Players expend effort to get points
- Players can trade points securely
 - Signatures prevent alteration of trades
 - Signatures authenticate the origin of trades
- Players can detect overtrading
 - Players will decline to extend the game on blocks with overtrades
 - If they do, they are wasting effort, since other players will not extend the game on their blocks

- Lets solve this by adding a fee in transactions
 - Incent players to add transactions by giving them points per trade added
 - Two ways to get points!
- Why limit trades to players?
 - Let players send points to anyone with a public key....
 - This is now a global transaction system

Game #4 - Simplified Bitcoin

- Players = "miners", points = "bitcoins"
- Transactions send value (bitcoins) from key to key
- The chain race game (blockchain) prevents overspending without a central authority
- Game rules = bitcoin node code, changes by miner consensus
- Player consensus replaces authority
 - Number of coins (limit to 21 million)
 - Reward per block
 - How difficulty grows

Transition to transactions

- Note that player/miners can interact with non-players
- Once a point is created, the recipient can create a transaction to any public key
- Now can extend to trades with non-miner/players
- All points still originate with some block/miner

Anatomy of a Block

Block #404234

Summary	
Number Of Transactions	459
Output Total	3,812.78908631 BTC
Estimated Transaction Volume	815.7381711 BTC
Transaction Fees	0.1059914 BTC
Height	404234 (Main Chain)
Timestamp	2016-03-25 15:52:47
Received Time	2016-03-25 15:52:47
Relayed By	BitFury
Difficulty	165,496,835,118.23
Bits	403088579
Size	704.855 KB
Version	4
Nonce	311538175
Block Reward	25 BTC

Hashes	
Hash	0000000000000000221e92ec5f42f4ccf8ba7ad71020e9dcbeed3f5e484b2f8
Previous Block	00000000000000000000000000000000000000
Next Block(s)	00000000000000000005687e47a1fa3936b3c7eca894920b30d4904142faa1df75
Merkle Root	3bef11b868b850a27ca176d8c4a5fb465f71771f9b46ba272dbf6f53d4e1550b

Network Propagation (Click To View)

(from blockchain.info, a great resource for bitcoin info) Unit 5/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Transactions

4d0452c4fe98178875ede72319ca3162389edd43a22690ebcd49938bbcffd37c			2016-03-25 15:52:47
to Inputs (Newly Generated Coins)	-	1DrK44np3gMKuvc (Bitfury)	25.1059914 BTC
			25.1059914 BTC
d93695feee71a0d115d84e3bfbd759eebc03c3f707b9fdfec6fed3514d204ec			2016-03-25 15:51:26
BJaAgMK9F31HpTB8yePe69zEqR6cTg9eS	-	1Lie2o1tAjKxHgRMkFVmJZUMgFbsjummks	1.1269325 BTC
			1.1269325 BTC
3cd4fbc48378eb686873f0f8b1d5cc34dfd0099bcc4cfb46069649fb18fe0e7			2016-03-25 15:51:55
7wLMV3wgDFCn4LQxQsDLrD6KvvVMZSuBi	-	15PUBY3omSex2kkBNBfEwextZvhRWYevNA	8.7 BTC
TWEMV3WgDFCR4EWXQSDEDORVVVMZS0DI	-	17zLoiL1EEdHkgdpNuagG1vq7Fa6UMyK2h	3.37028336 BTC
			12.07028336 BTC

Where are the rules?

- The laws of Bitcoin (or any blockchain) are in the miner nodes
 - Whatever 51% of the miners are running will win
- The source to the node are the law
- How do you change rules?
- What happens if:
 - The crypto breaks?
 - We want to add more coins?
 - We want to change the block format?

What happens if the majority of the players defect?

- 51% attacks can extend bad blocks
- How large a body needs to defect?
 - Depending on network, can be 30% or less
 - Sybil attacks

Operational Realities

- Assumes cheap storage and networking
 - Nodes store every transaction ever
 - Transactions and blocks are broadcast
 - Might limit scale...
- Transactions are slow
 - ▶ To verify a transaction, have to wait for a public block
- Control of private keys is crucial
 - Lose your private key = unspendable coins
 - Steal your private key = steal coins
 - Blacklisting keys breaks the game
 - Builds a central control locus

- Global hashing power just passed 1 Exahash/sec
- 1,000,000,000,000,000 SHA-256 ops/sec
- How many transactions:
 - Approx 185,000 transactions / day
 - About 383,000 BTC exchanged / day
- ▶ 1 BTC =~ \$420 USD

What a Petahash looks like

Aich	R.A.		

Hashnest.com

Hardware Cryptography?

Is there a place for secure hardware?

- Transactions don't have to just be transactions
- Transactions can contain:
 - Executable code
 - In fact, BTC transactions are scripts
 - Scripts specify when outputs can be spent
 - Contracts
 - Set conditions for allowing outputs to move
 - Random data to be timestamped
 - "Colored coins" add data to a transaction
 - Transaction is recorded, so can be a hash of a document or other external data

- Change the game to require signed blocks
- Limit miners to some authorized set
- Useful for adding other rules or preventing block "takeovers"
- Approach being used to trade securities on a blockchain
- Same crypto physics apply....

- Blockchain.info a view onto the BTC chain
- Ethereum.org blockchain programming
- Hyperledger.org standards for blockchains
- R3CEV.com bank consortium for chains
- Bank of England Distributed Ledgers
 - http://www.bankofengland.co.uk/banknotes/Pages/digital currencies/default.aspx

For a deeper understanding

- Google "Princeton Bitcoin Book" a free and excellent technical exploration of everything in this presentation
- Associated Coursera course