

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

DEPARTMENT OF INFORMATION TECHNOLOGY

BLOCK CHAIN AND CRYPTOCURRENCY

IV YEAR - VII SEM

UNIT 3 - DISTRIBUTED CONSENSUS & BLOCK CHAIN

APPLICATIONS

Bitcoin uses Nakamoto consensus:

 Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> chain *held* in its view (Ties broken adversarially).

Chain with the highest difficulty, i.e, largest sum of the difficulty D within blocks!

Bitcoin uses Nakamoto consensus:

 Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> chain *held* in its view (Ties broken adversarially).

Chain with the highest difficulty, i.e, largest sum of the difficulty D within blocks!

Bitcoin uses Nakamoto consensus:

 Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> (longest for us) chain *held* in its view (Ties broken adversarially).

Bitcoin uses Nakamoto consensus:

- Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> (longest for us) chain *held* in its view (Ties broken adversarially).
- **Confirmation rule:** Each miner confirms the block (along with its prefix) that is *k*-deep within the longest chain in its view.
 - In practice, k = 6.
 - Miners and clients accept the transactions in the latest confirmed block and its prefix <u>as their log</u>.
 - Note that *confirmation* is **different** from *finalization*.
- Leader selection rule: Proof-of-Work.

Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Chain with the highest difficulty, i.e, largest sum of the difficulty D within blocks!

Bitcoin uses Nakamoto consensus:

- Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> (longest for us) chain *held* in its view (Ties broken adversarially).
- **Confirmation rule:** Each miner confirms the block (along with its prefix) that is *k*-deep within the longest chain in its view.
 - In practice, k = 6.
 - Miners and clients accept the transactions in the latest confirmed block and its prefix <u>as their log</u>.
 - Note that *confirmation* is **different** from *finalization*.
- Leader selection rule: Proof-of-Work.

Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Bitcoin: Difficulty Adjustment

New target is not allowed to be more than 4x old target. New target is not allowed to be less than ¼ x old target. t_2 : difference between the timestamps in B and A t_3 : difference between the

Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumtines of Variable Difficulty (2016)

Consensus in the Internet Setting

Characterized by open participation.

Challenges:

- Adversary can create many Sybil nodes to take over the protocol.
- Honest nodes can come and go at will.

Requirements:

Achieved by Bitcoin!

- Limit adversary's participation.
 - Sybil resistance (e.g., Proof-of-Work)!
- Maintain availability (liveness) of the protocol when the honest nodes come and go at will, resulting in changes in the number of nodes.
 - Dynamic availability!

Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Can we show that Bitcoin is a <u>secure</u> state machine replication (SMR) protocol (satisfies safety and liveness) under <u>synchrony</u> against a <u>Byzantine adversary</u>?

What is the highest $\beta(t)$ for which Bitcoin is secure?? Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Model for Bitcoin

- Many different miners, each with *infinitesimal* power. Total mining rate (growth rate of the chain): λ (1/minutes). In Bitcoin, $\lambda = 1/10$.
- Suppose Adversary is Byzantine and controls $\beta < \frac{1}{2}$ fraction of the mining power.
 - Adversarial mining rate: $\lambda_a = \beta \lambda$
 - Honest mining rate: $\lambda_h = (1 \beta)\lambda$
- Network is **synchronous** with a known upper bound Δ on delay.

Suppose Eve has a UTXO.

- tx_1 : transaction spending Eve's UTXO to pay to car vendor Alice.
- tx_2 : transaction spending Eve's UTXO to pay to car vendor Bob.

 $t_0 = 0$

- Alice's ledger at time t_1 contains tx_1 : $LOG_{t_1}^{Alice} = \langle tx_1 \rangle$
- Alice thinks it received Eve's payment and sends over the car.
- Bob's ledger at time t_2 contains tx_2 : $LOG_{t_2}^{Bob} = \langle tx_2 \rangle$

t₂

Reminder: Why is safety important

Bob thinks it received Eve's payment and sends over the car.

When safety is violated, Eve can double-spend! Consensus/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Let's show that Bitcoin is insecure if $\beta(t) \ge 1/2$

A Peer-to-Peer Electron senses for BL2066K CHAIN AND CRYPTOCURRENCY/Anand Kumar. N/IT/SNSCT

A Peer-to-Peer Electron sense is a Peer-to-Peer-to-Peer Electron sense is a Peer-to-Peer Electron sense is a Peer-to-Peer-

A Peer-to-Peer Electr Gonsensus de Black CHAIN AND CRYPTOCURRENCY Anand Kumar. N/IT/SNSCT