
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

BLOCK CHAIN AND CRYPTOCURRENCY
IV YEAR - VII SEM

UNIT 2 – Block chain Technologies

Intro - Block chain

Technologies

New topic: limitations of

Bitcoin

Recall: UTXO contains (hash of) ScriptPK

 simple script: indicates conditions when UTXO can be spent

Limitations:

 Difficult to maintain state in multi-stage contracts

 Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.

 Desired policy: can only transfer 2BTC per day out of my wallet

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example: DNS

Domain name system on the blockchain: [google.com ⇾ IP addr]

Need support for three operations:

 Name.new(OwnerAddr, DomainName): intent to register

 Name.update(DomainName, newVal, newOwner, OwnerSig)

 Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY

<DNS> <DomainName> <IPaddr> <1>

only owner can “spend” this UTXO to update domain data

Contract: (should be enforced by miners)

if domain google.com is registered,

no one else can register that domain

Problem: this contract cannot be enforced using Bitcoin script

verify

sig is valid

ensure top

of stack is 1

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

What to do?

NameCoin: a fork of Bitcoin that
implements this contract

(see also the Ethereum Name Service --
ENS)

Can we build a blockchain that natively
supports generic contracts like this?

⇒ Ethereum

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum: enables a world

of applications

stateofthedapps.com, dapp.review

A world of Ethereum Decentralized apps (DAPPs)

 New coins: ERC-20 standard interface

 DeFi: exchanges, lending, stablecoins, derivatives,

etc.

 Insurance

 DAOs: decentralized organizations

 NFTs: Managing asset ownership (ERC-721 interface)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Bitcoin as a state transition

system

UTXO1

UTXO2

⋮

world state

…

UTXO1

UTXO3

⋮

updated world state

…
input

Tx: UTXO2 ⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0 ∈ S genesis state

I: set of all possible inputs

Bitcoin rules:

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum as a state

transition system

Much richer state transition functions

⇒ one transition executes an entire program

Ethereum

world state

…

updated Ethereum

world state

…
input

Tx

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Running a program on a blockchain
(DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program

code

… blockchain …

state1
Tx1 Tx2 state2

create a DAPP

…

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum system

Proof-of-Stake consensus

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives

Tx fees for block

(along with other rewards)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

A bit about the beacon chain
(Eth2 consensus layer)

To become a validator: stake (lock up) 32 ETH … or use Lido.

Validators: - sign blocks to express correctness (finalized once enough sigs)

- occasionally act as block proposer (chosen at random)

- correct behavior ⇒ issued new ETH every epoch (32
blocks)

- incorrect behavior ⇒ slashed

Staked ETH

(27M)
Validators

(843K)

(lots of details)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The economics of staking

Validator locks up 32 ETH. Oct 2023: 27M ETH staked
(total)

Annual validator income (an example):

 Issuance: 1.0 ETH

 Tx fees: 0.4 ETH

 MEV: 0.4 ETH

 Total: 1.8 ETH (5.6% return on 32 ETH staked)

Can be adjusted
(BASE_REWARD_FACTOR)

A function of

congestion

In practice: staking provider (e.g., Lido) takes a cut of the returns

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum system

consensus layer (beacon chain)

compute layer (execution chain)

notify_new_payload(payload) [Engine API]

sends transactions to compute layer

32 blocks
in an epoch

update

world state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum Compute

Layer:

The EVM

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum compute layer:

the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) externally owned accounts (EOA):
controlled by ECDSA signing key pair (pk,sk).

sk: signing key known only to account owner

(2) contracts: controlled by code.

code set at account creation time, does not change

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Data associated with an

account
Account data Owned (EOA) Contracts

address (computed): H(pk) H(CreatorAddr, CreatorNonce)

code: ⊥ CodeHash

storage root (state): ⊥ StorageRoot

balance (in Wei): balance balance (1 Wei = 10−18 ETH)

nonce: nonce nonce

(#Tx sent) + (#accounts created): anti-replay mechanism

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Account state: persistent

storage
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init
to 0.

Account storage root: Merkle Patricia Tree hash of S[]

 Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a

S[010] = b

S[011] = c

S[110] = d root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute

root hash:

≤ 2×|S|

|S| = # non-zero cells

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

State transitions: Tx and

messages
Transactions: signed data by initiator

 To: 32-byte address of target (0 ⇾ create new account)

 From, [Signature]: initiator address and signature on Tx (if
owned)

 Value: # Wei being sent with Tx (1 Wei = 10-18 ETH)

 Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee (later)

 if To = 0: create new contract code = (init, body)

 if To ≠ 0: data (what function to call & arguments)

 nonce: must match current nonce of sender (prevents Tx replay)

 chain_id: ensures Tx can only be submitted to the intended chain

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

State transitions: Tx and

messages

Transaction types:

owned ⇾ owned: transfer ETH between users

owned ⇾ contract: call contract with ETH & data

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example (block #10993504)

From To msg.value Tx fee (ETH)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Messages: virtual Tx initiated

by a contract

Same as Tx, but no signature (contract has no signing key)

contract ⇾ owned: contract sends funds to user

contract ⇾ contract: one program calls another (and sends
funds)

One Tx from user: can lead to many Tx processed.
Composability!

Tx from owned addr ⇾ contract ⇾ another contract
another contract ⇾ different owned

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example Tx

world state (four accounts) updated world state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An Ethereum Block

Block proposer creates a block of n Tx: (from Txs submitted by users)

 To produce a block do:

 for i=1,…,n: execute state change of Txi sequentially

(can change state of >n accounts)

 record updated world state in block

Other validators re-execute all Tx to verify block ⇒
sign block if valid ⇒ enough sigs, epoch is finalized.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Block header data (simplified)

(1) consensus data: proposer ID, parent hash, votes, etc.

(2) address of gas beneficiary: where Tx fees will go

(3) world state root: updated world state

Merkle Patricia Tree hash of all accounts in the system

(4) Tx root: Merkle hash of all Tx processed in block

(5) Tx receipt root: Merkle hash of log messages generated in
block

(5) Gas used: used to adjust gas price (target 15M gas per block)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum blockchain:

abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Amount of memory to run a

node

ETH total blockchain size (archival): 16 TB (Oct. 2023)

≈1.3 TB

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {

address owner; // address of domain owner

bytes32 value; // IP address

}

// array of all registered domains

mapping (bytes32 => nameEntry) data;

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

function nameNew(bytes32 name) {

// registration costs is 100 Wei

if (data[name] == 0 && msg.value >= 100) {

data[name].owner = msg.sender // record domain owner

emit Register(msg.sender, name) // log event

}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,

// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >= 10) {

data[name].value = newValue; // record new value

data[name].owner = newOwner; // record new owner

}}}

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

function nameLookup(bytes32 name) {

return data[name];

}

} // end of contract

Used by other contracts

Humans do not need this

(use etherscan.io)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

EVM mechanics: execution

environment

Write code in Solidity (or another front-end

language)

⇒ compile to EVM bytecode

(some projects use WASM or BPF

bytecode)

⇒ validators use the EVM to execute

contract bytecode

in response to a Tx

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The EVM

Stack machine (like Bitcoin) but with JUMP

 max stack depth = 1024

 program aborts if stack size exceeded; block proposer keeps gas

 contract can create or call another contract

In addition: two types of zero initialized memory

 Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

 Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

 LOG0(data): write data to log

see https://www.evm.codes

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Every instruction costs gas,

examples:

SSTORE addr (32 bytes), value (32 bytes)

 zero ⇾ non-zero: 20,000 gas

 non-zero ⇾ non-zero: 5,000 gas (for a cold slot)

 non-zero ⇾ zero: 15,000 gas refund (example)

CREATE : 32,000 + 200×(code size) gas; CALL gas, addr, value

SELFDESTRUCT addr: kill current contract (5000 gas)

Refund is given for reducing size of blockchain state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation

Why charge gas?

 Tx fees (gas) prevents submitting Tx that runs for many steps.

 During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

 Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion
price)

 Producer chooses Tx with highest gasPrice (max

sum(gasPrice×gasLimit))

⟹ not an efficient auction mechanism (first price auction)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas prices spike during

congestion
GasPrice in Gwei:

86 Gwei = 86×10-9 ETH

Average Tx fee in USD congestion

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation: EIP1559
(since 8/2021)

EIP1559 goals (informal):

 users incentivized to bid their true utility for
posting Tx,

 block proposer incentivized to not create fake
Tx, and

 disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden,
2021]

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation: EIP1559

Every block has a “baseFee”:

the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

 earlier blocks at gas limit (30M gas) ⟹ base fee goes up 12.5%

 earlier blocks empty ⟹ base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) ⟹ base fee does not
change

interpolate

in between

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Computed gasPrice bid:

gasPrice ⇽ min(maxFee, baseFee + maxPriorityFee)

Gas calculation

EIP1559 Tx specifies three parameters:

 gasLimit: max total gas allowed for Tx

 maxFee: maximum allowed gas price (max gas ⇾ Wei
conversion)

 maxPriorityFee: additional “tip” to be paid to block proposer

Max Tx fee: gasLimit × gasPrice

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation (informal)

gasUsed ⇽ gas used by Tx

Send gasUsed×(gasPrice – baseFee) to block proposer

BURN gasUsed× baseFee

⇒ total supply of ETH can decrease

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation

(1) if gasPrice < baseFee: abort

(2) If gasLimit×gasPrice < msg.sender.balance: abort

(3) deduct gasLimit×gasPrice from msg.sender.balance

(4) set Gas ⇽ gasLimit

(5) execute Tx: deduct gas from Gas for each instruction

if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit×gasPrice)

(6) Refund Gas×gasPrice to msg.sender.balance

(7) gasUsed ⇽ gasLimit – Gas

(7a) BURN gasUsed× baseFee

(7b) Send gasUsed×(gasPrice – baseFee) to block producer

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example baseFee and effect

of burn
block # gasUsed baseFee

(Gwei)

ETH

burned

15763570 21,486,058 16.92 0.363

15763569 14,609,185 16.97 0.248

15763568 25,239,720 15.64 0.394

15763567 29,976,215 13.90 0.416

15763566 14,926,172 13.91 0.207

15763565 1,985,580 15.60 0.031
≈ gasUsed×baseFee

baseFee < 16Gwei ⇒ new issuance > burn ⇒ ETH inflates

baseFee > 16Gwei ⇒ new issuance < burn ⇒ ETH deflates

(<15M)

↓

(<15M)

↓

(<15M)

↓

beacon chain

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Why burn ETH ???

Recall: EIP1559 goals (informal)

 users incentivized to bid their true utility for
posting Tx,

 block proposer incentivized to not create fake Tx,
and

 disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block
producer):

⟹ in periods of low Tx volume proposer would try
to increase volume by offering to refund the
baseFee off chain to users.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Note: transactions are becoming

more complex

Gas usage is increasing ⇒ each Tx takes more instructions to execute

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

