
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

BLOCK CHAIN AND CRYPTOCURRENCY
IV YEAR - VII SEM

UNIT 2 – Block chain Technologies

Intro - Block chain

Technologies

New topic: limitations of

Bitcoin

Recall: UTXO contains (hash of) ScriptPK

 simple script: indicates conditions when UTXO can be spent

Limitations:

 Difficult to maintain state in multi-stage contracts

 Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.

 Desired policy: can only transfer 2BTC per day out of my wallet

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example: DNS

Domain name system on the blockchain: [google.com ⇾ IP addr]

Need support for three operations:

 Name.new(OwnerAddr, DomainName): intent to register

 Name.update(DomainName, newVal, newOwner, OwnerSig)

 Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY

<DNS> <DomainName> <IPaddr> <1>

only owner can “spend” this UTXO to update domain data

Contract: (should be enforced by miners)

if domain google.com is registered,

no one else can register that domain

Problem: this contract cannot be enforced using Bitcoin script

verify

sig is valid

ensure top

of stack is 1

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

What to do?

NameCoin: a fork of Bitcoin that
implements this contract

(see also the Ethereum Name Service --
ENS)

Can we build a blockchain that natively
supports generic contracts like this?

⇒ Ethereum

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum: enables a world

of applications

stateofthedapps.com, dapp.review

A world of Ethereum Decentralized apps (DAPPs)

 New coins: ERC-20 standard interface

 DeFi: exchanges, lending, stablecoins, derivatives,

etc.

 Insurance

 DAOs: decentralized organizations

 NFTs: Managing asset ownership (ERC-721 interface)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Bitcoin as a state transition

system

UTXO1

UTXO2

⋮

world state

…

UTXO1

UTXO3

⋮

updated world state

…
input

Tx: UTXO2 ⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0 ∈ S genesis state

I: set of all possible inputs

Bitcoin rules:

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum as a state

transition system

Much richer state transition functions

⇒ one transition executes an entire program

Ethereum

world state

…

updated Ethereum

world state

…
input

Tx

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Running a program on a blockchain
(DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program

code

… blockchain …

state1
Tx1 Tx2 state2

create a DAPP

…

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum system

Proof-of-Stake consensus

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives

Tx fees for block

(along with other rewards)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

A bit about the beacon chain
(Eth2 consensus layer)

To become a validator: stake (lock up) 32 ETH … or use Lido.

Validators: - sign blocks to express correctness (finalized once enough sigs)

- occasionally act as block proposer (chosen at random)

- correct behavior ⇒ issued new ETH every epoch (32
blocks)

- incorrect behavior ⇒ slashed

Staked ETH

(27M)
Validators

(843K)

(lots of details)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The economics of staking

Validator locks up 32 ETH. Oct 2023: 27M ETH staked
(total)

Annual validator income (an example):

 Issuance: 1.0 ETH

 Tx fees: 0.4 ETH

 MEV: 0.4 ETH

 Total: 1.8 ETH (5.6% return on 32 ETH staked)

Can be adjusted
(BASE_REWARD_FACTOR)

A function of

congestion

In practice: staking provider (e.g., Lido) takes a cut of the returns

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum system

consensus layer (beacon chain)

compute layer (execution chain)

notify_new_payload(payload) [Engine API]

sends transactions to compute layer

32 blocks
in an epoch

update

world state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum Compute

Layer:

The EVM

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Ethereum compute layer:

the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) externally owned accounts (EOA):
controlled by ECDSA signing key pair (pk,sk).

sk: signing key known only to account owner

(2) contracts: controlled by code.

code set at account creation time, does not change

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Data associated with an

account
Account data Owned (EOA) Contracts

address (computed): H(pk) H(CreatorAddr, CreatorNonce)

code: ⊥ CodeHash

storage root (state): ⊥ StorageRoot

balance (in Wei): balance balance (1 Wei = 10−18 ETH)

nonce: nonce nonce

(#Tx sent) + (#accounts created): anti-replay mechanism

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Account state: persistent

storage
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init
to 0.

Account storage root: Merkle Patricia Tree hash of S[]

 Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a

S[010] = b

S[011] = c

S[110] = d root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute

root hash:

≤ 2×|S|

|S| = # non-zero cells

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

State transitions: Tx and

messages
Transactions: signed data by initiator

 To: 32-byte address of target (0 ⇾ create new account)

 From, [Signature]: initiator address and signature on Tx (if
owned)

 Value: # Wei being sent with Tx (1 Wei = 10-18 ETH)

 Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee (later)

 if To = 0: create new contract code = (init, body)

 if To ≠ 0: data (what function to call & arguments)

 nonce: must match current nonce of sender (prevents Tx replay)

 chain_id: ensures Tx can only be submitted to the intended chain

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

State transitions: Tx and

messages

Transaction types:

owned ⇾ owned: transfer ETH between users

owned ⇾ contract: call contract with ETH & data

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example (block #10993504)

From To msg.value Tx fee (ETH)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Messages: virtual Tx initiated

by a contract

Same as Tx, but no signature (contract has no signing key)

contract ⇾ owned: contract sends funds to user

contract ⇾ contract: one program calls another (and sends
funds)

One Tx from user: can lead to many Tx processed.
Composability!

Tx from owned addr ⇾ contract ⇾ another contract
another contract ⇾ different owned

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example Tx

world state (four accounts) updated world state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An Ethereum Block

Block proposer creates a block of n Tx: (from Txs submitted by users)

 To produce a block do:

 for i=1,…,n: execute state change of Txi sequentially

(can change state of >n accounts)

 record updated world state in block

Other validators re-execute all Tx to verify block ⇒
sign block if valid ⇒ enough sigs, epoch is finalized.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Block header data (simplified)

(1) consensus data: proposer ID, parent hash, votes, etc.

(2) address of gas beneficiary: where Tx fees will go

(3) world state root: updated world state

Merkle Patricia Tree hash of all accounts in the system

(4) Tx root: Merkle hash of all Tx processed in block

(5) Tx receipt root: Merkle hash of log messages generated in
block

(5) Gas used: used to adjust gas price (target 15M gas per block)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The Ethereum blockchain:

abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Amount of memory to run a

node

ETH total blockchain size (archival): 16 TB (Oct. 2023)

≈1.3 TB

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {

address owner; // address of domain owner

bytes32 value; // IP address

}

// array of all registered domains

mapping (bytes32 => nameEntry) data;

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

function nameNew(bytes32 name) {

// registration costs is 100 Wei

if (data[name] == 0 && msg.value >= 100) {

data[name].owner = msg.sender // record domain owner

emit Register(msg.sender, name) // log event

}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,

// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >= 10) {

data[name].value = newValue; // record new value

data[name].owner = newOwner; // record new owner

}}}

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

An example contract:

NameCoin

function nameLookup(bytes32 name) {

return data[name];

}

} // end of contract

Used by other contracts

Humans do not need this

(use etherscan.io)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

EVM mechanics: execution

environment

Write code in Solidity (or another front-end

language)

⇒ compile to EVM bytecode

(some projects use WASM or BPF

bytecode)

⇒ validators use the EVM to execute

contract bytecode

in response to a Tx

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

The EVM

Stack machine (like Bitcoin) but with JUMP

 max stack depth = 1024

 program aborts if stack size exceeded; block proposer keeps gas

 contract can create or call another contract

In addition: two types of zero initialized memory

 Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

 Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

 LOG0(data): write data to log

see https://www.evm.codes

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Every instruction costs gas,

examples:

SSTORE addr (32 bytes), value (32 bytes)

 zero ⇾ non-zero: 20,000 gas

 non-zero ⇾ non-zero: 5,000 gas (for a cold slot)

 non-zero ⇾ zero: 15,000 gas refund (example)

CREATE : 32,000 + 200×(code size) gas; CALL gas, addr, value

SELFDESTRUCT addr: kill current contract (5000 gas)

Refund is given for reducing size of blockchain state

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation

Why charge gas?

 Tx fees (gas) prevents submitting Tx that runs for many steps.

 During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

 Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion
price)

 Producer chooses Tx with highest gasPrice (max

sum(gasPrice×gasLimit))

⟹ not an efficient auction mechanism (first price auction)

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas prices spike during

congestion
GasPrice in Gwei:

86 Gwei = 86×10-9 ETH

Average Tx fee in USD congestion

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation: EIP1559
(since 8/2021)

EIP1559 goals (informal):

 users incentivized to bid their true utility for
posting Tx,

 block proposer incentivized to not create fake
Tx, and

 disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden,
2021]

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation: EIP1559

Every block has a “baseFee”:

the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

 earlier blocks at gas limit (30M gas) ⟹ base fee goes up 12.5%

 earlier blocks empty ⟹ base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) ⟹ base fee does not
change

interpolate

in between

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Computed gasPrice bid:

gasPrice ⇽ min(maxFee, baseFee + maxPriorityFee)

Gas calculation

EIP1559 Tx specifies three parameters:

 gasLimit: max total gas allowed for Tx

 maxFee: maximum allowed gas price (max gas ⇾ Wei
conversion)

 maxPriorityFee: additional “tip” to be paid to block proposer

Max Tx fee: gasLimit × gasPrice

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation (informal)

gasUsed ⇽ gas used by Tx

Send gasUsed×(gasPrice – baseFee) to block proposer

BURN gasUsed× baseFee

⇒ total supply of ETH can decrease

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Gas calculation

(1) if gasPrice < baseFee: abort

(2) If gasLimit×gasPrice < msg.sender.balance: abort

(3) deduct gasLimit×gasPrice from msg.sender.balance

(4) set Gas ⇽ gasLimit

(5) execute Tx: deduct gas from Gas for each instruction

if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit×gasPrice)

(6) Refund Gas×gasPrice to msg.sender.balance

(7) gasUsed ⇽ gasLimit – Gas

(7a) BURN gasUsed× baseFee

(7b) Send gasUsed×(gasPrice – baseFee) to block producer

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Example baseFee and effect

of burn
block # gasUsed baseFee

(Gwei)

ETH

burned

15763570 21,486,058 16.92 0.363

15763569 14,609,185 16.97 0.248

15763568 25,239,720 15.64 0.394

15763567 29,976,215 13.90 0.416

15763566 14,926,172 13.91 0.207

15763565 1,985,580 15.60 0.031
≈ gasUsed×baseFee

baseFee < 16Gwei ⇒ new issuance > burn ⇒ ETH inflates

baseFee > 16Gwei ⇒ new issuance < burn ⇒ ETH deflates

(<15M)

↓

(<15M)

↓

(<15M)

↓

beacon chain

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Why burn ETH ???

Recall: EIP1559 goals (informal)

 users incentivized to bid their true utility for
posting Tx,

 block proposer incentivized to not create fake Tx,
and

 disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block
producer):

⟹ in periods of low Tx volume proposer would try
to increase volume by offering to refund the
baseFee off chain to users.

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

Note: transactions are becoming

more complex

Gas usage is increasing ⇒ each Tx takes more instructions to execute

Unit 2/ BLOCK CHAIN AND CRYPTOCURRENCY/ Anand Kumar. N/IT/SNSCT

