SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROBLEM SOLVING AND C PROGRAMMING

I YEAR - I SEM

UNIT 1 - Introduction to Problem Solving Techniques
TOPIC 6 - Simple Strategies for Developing Algorithms

SIMPLE STRATEGIES FOR DEVELOPING ALGORITHM

$>$ They are two commonly used strategies used in developing algorithm

1. Iteration
2. Recursion

ITERATION:

- The iteration is when a loop repeatedly executes till the controlling condition becomes false.
- The iteration is applied to the set of instructions which we want to get repeatedly executed.
- Iteration includes "initialization, condition, and execution" of statement within loop and update (increments and decrements) the control variable.
$>$ A sequence of statements is executed until a specified condition is true is called iterations.

1. for loop
2. While loop

FOR \& WHILE LOOP

RECURSION

$>$ Recursions:

- A function that calls itself is known as recursion.
- Recursion is a process by which a function calls itself repeatedly until some specified condition has been satisfied.
$>\underline{\text { Algorithm for factorial of } \mathrm{n} \text { numbers using recursion }}$
$>$ Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop
$>$ Sub function factorial(n):
Step1: if $(\mathrm{n}==1)$ then fact $=1$ return fact
Step2: else fact $=\mathrm{n}$ * factorial($\mathrm{n}-1$) and return fact

RECURSION

$>$ Pseudo code for factorial using recursion:
Main function:
BEGIN
GET n
CALL
factorial(n)
PRINT fact
END
Sub function factorial(n):
$\operatorname{IF}(\mathrm{n}==1)$ THEN
fact $=1$
RETURN fact
ELSE

