SENSORS: Types and Characteristics

Academic Resource Center

I- Physical Measurements as input

(Magguramant I Inita)				
Physical Quantity	Name	Symbol	English or other	
Length	Meter	m	feet, yard or mile	
Mass	Kilogram	kg	lbm, slug or ton	
Time	Second	S		
Electric current	Ampere	A		
Temperature	Kelvin	K	Rankine, Fahreinheit, or Celcius	
Amount of substance	Mole	mol		
Luminous intensity	candela	Cd	violle	

Acceleration	Name	Symbol
Acceleration	m/s^2	m/s^2
Area	m^2	m^2
Capacitance	Farad	F=[s^4.A^2]/[m^2.kg]
Force	Newton	$N=[kg.m/s^2]$
Power	Watt	$W=[kg.m^2/s^3]$
Pressure	Pascal	$Pa=[kg/m.s^2]$
Speed	m/s	m/s
Voltage	Volt	$V=[kg.m^2/A.s^3]$
Energy	Joule	$J=[kg.m^2/s^2]$

II-Characteristics of different types of sensors

- a) Active vs. Passive: Does sensor draw energy from the signal?
- b) **Digital vs. Analog**: Is the signal discrete or continuous?
- c) Null and deflection methods
- d) Input Output configuration

Active vs. Passive Sensors

- 1) **Active sensors**: Require an external source of power (excitation voltage) that provides the majority of the output power of the signal
- 2) **Passive sensors**: The output power is almost entirely provided by the measured signal without an excitation voltage

Digital vs. Analog Sensors

- 1) **Digital sensors**: The signal produced or reflected by the sensor is binary
- 2) **Analog sensors**: The signal produced by the sensor is continuous and proportional to the measurand

Null and Deflection Methods

- 1) **Deflection**: The signal produces some physical (deflection) effect closely related to the measured quantity and transduced to be observable.
- 2) **Null**: The signal produced by the sensor is counteracted to minimize the deflection. That opposing effect necessary to maintain a zero deflection should be proportional to the signal of the measurand

Input-Output Configuration

- 1) Method of inherent insensitivity: Use whenever possible
- 2) Method of high gain feedback:
- 3) Method of calculated output corrections
- 4) Method of signal filtering
- 5) Method of opposing inputs

- Interfering Input: Quantities to which the Instrument is unintentionally sensitive
- **Modifying Input**: Quantities that cause a change in the input output relations of the instrument
- Examples are: Temperature, atmospheric pressure, magnetic fields, humidity, etc.

Method of high gain feedback

- Open loop system
- x0 = (K1.K2).ei
- Any modification to K1 or K2 will affect the response of changing the desired output

- Closed loop system
- x0 = [(KaK1K2)/(1+KaK1K2Kf)].ei
- If Ka is very large "high gain", then Ka.K1.K2.Kf >> 1
- x0= [1/Kf].ei
- Kaf is not affected by the undesired inputs like K1 and K2

• **Ka:** Modifying Input A

• **K1:** Modifying Input 1

• **K2:** Modifying Input 2

• **Kf:** Modifying Input F

• Method of calculated output corrections: measure or estimate the magnitudes of the interfering or modifying input and subtract from signal to calculate the correct output

- Method of signal filtering: Introduce elements into the instrument to block or reduce the interfering or modifying inputs
 - Input Filtering:

• Output Filtering:

• Method of opposing inputs: Intentionally introduce interfering or modifying inputs to cancel the undesired effects of other interfering inputs

Sensors and their principles of operation

• The purpose of a sensor is to detect a physical quantity and translate it into a signal through a relationship of the type:

• The sensitivity is defined

$$I_{out} = f(I_{in})$$

$$\eta = \frac{dI_{out}}{dI_{in}}$$

Variable resistance transducer elements:

$$R = \frac{\rho L}{A}$$

- Sliding contact
- Potentiometer
- Strain gages
- Thermistors
- Photoconductive light detectors
- Piezo-resistive strain gages
- Resistance temperature detectors

Thermocouples:

 When two dissimilar materials come in contact an EMF is generated, the magnitude of the EMF is dependent on temperature. (Seebeck Effect)

$$\varepsilon_{AB}(T_m) - \varepsilon_{AB}(T_{ref}) = EMF$$

Variable inductance transducers

$$L = \frac{\mu_0 n^2 A_a}{h_a}$$
 $X_L = 2\pi f L$ $Z = \sqrt{X_L^2 + R^2}$

Inductance Reactance AC circuits Impedance

Variable reluctance transducer:

$$V = -n \frac{d\Phi}{dt}$$

 Inductance device with a permanent magnet to produce V

• Capacitance transducer

$$C = \frac{\varepsilon_0 KA}{d}$$

Other sensors:

- Piezoelectric sensors
- Semiconductors sensors
- Pn-junctions
- Photodiodes
- Photon detectors
- Hall-effect sensor

REFERENCES

Dr. Jose Garcia Lecture 2 MMAE 415: Aerospace Laboratory II Spring 2012

