

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

MAXIMA & MINIMA OF JUNCTIONS OF

JWO VARIABLES

Conclitions for f(x,y) to be maximum (or) minimum (i) Necessary condition:

The necessary condition for f(x,y) to have a maximum or minimum at the point (a,b) are $\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial x}(a,b) = 0$ & $\frac{\partial f}{\partial y}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$

(ii) Sufficient condition:

If $f_{x}(a,b)=0$, $f_{y}(a,b)=0$, $f_{xx}(a,b)=A$, $f_{xy}(a,b)=B$, $f_{yy}(a,b)=C$ then.

(1) f(a,b) is maximum value if AC-B2>0& A<0 and the point (a,b) is called the maximum point.

(2) of (a,b) is minimum value if AC-B2>0 & A>0 and the point (a,b) is called the minimum point

(3) f(a,b) is neither maximum nor minimum (a) not an extremum if $AC-B^2 < 0$ and the point $(a,b)^2$ is called saddle point.

(4) If $AC-B^2=0$ then the test is inconclusive.

(An Autonomous Institution) Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

Stationary points: A function fin, y) is said to be stationary at the point (a,b) if fx=0, fy=0

not Notations: $\frac{\partial f}{\partial x} = fx$; $\frac{\partial f}{\partial y} = fy$; $\frac{\partial^2 f}{\partial x^2} = fxx$; $\frac{\partial^2 f}{\partial y^2} = fyy$; $\frac{\partial^2 f}{\partial x \partial y} = fxy$

Ind the maximum and minimum value of 7(x,y) = x3+3x42-3x2-3y2+4

 $\frac{80 \ln x}{1}$ $\frac{1}{3}(a,y) = x^3 + 3\pi y^2 - 3x^2 - 3y^2 + 4$ fx = 3x2+3y2-6x

 $fy = 6\pi y - 6y$ $A: \forall x = 6\pi - 6$ $B: \forall xy = 6y$

C: tyy = 6x-6

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

To find maximum Value: Maximum value of f(x,y) at the point (0,0) is 7(x,y)= x3+3xy2-3x2-3y2+4 f(0,0) = 4, a maximum value. To find minimume value: Minimum value of z(x,y) at the point (2,6) is 7 (x,y) = x3+ 3xy2 3x2-3y2+4 1(2,0) = 8+0-12-0+4 = 0, a minimum value. 1/21/ (2) Find the man. & min. value of f(n,y)= x= xy+y=2x+y 7 (a,y) = 22 2y+y2-22+y. fn = 22-y-2. fy = - >c+2y+1 A:]22 = 2. B: fry = -1 c: 744 = 2

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

To find of attornary points:

$$3n = 0 \Rightarrow 2n + y - 2 = 0$$
 $\Rightarrow 2n - 2 = y$
 $\Rightarrow 2n - 2 = y$
 $\Rightarrow 2n - 2 = 2 = 2$

From $\Rightarrow 2n - 2 = 2 = 2$
 $\Rightarrow 2n - 2 = 2$

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

$$\frac{80 \ln x}{4 y} = 3x^{2} - 3$$

$$4y = 3y^{2} - 12$$

$$3x=0$$
; $3y=0$
=) $3x^2-3=0$; $3y^2-12=0$
=) $9x=\pm 1$; $y=\pm 2$

.. The stationary pts - one (1,2), (1,-2), (-1,2), (-1,-2)

Stationary A B C
$$AC-B^2$$
 Conclusion point $4nn=6n$ $4ny=0$ $4yy=6y$ $AC-B^2$ Conclusion $(1,2)$ $6>0$ 0 12 $72>0$ minimum pt. $(1,-2)$ $6>0$ 0 -12 -72×0 Sackelle point $(-1,2)$ -6×0 0 12 -72×0 Sackelle point $(-1,2)$ -6×0 0 -12 $72>0$ Maximum point $(-1,-2)$ -6×0 0 -12 $72>0$ Maximum point

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

To find maximum value:

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20$$
 $f(-1,-2) = 38$, a man. value.

To find mini. value:

 $f(x,y) = x^3 + y^3 - 3x - 12y + 20$
 $f(x,y) = x^3 + y^3 - 3x - 12y + 20$
 $f(x,y) = x^3 + y^3 - 3x - 12y + 20$