

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

TOTAL DERIVATIVE

1)
$$f_{x} u = f(x,y)$$
 then total differential of u is $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$.

2)
$$g = g(x,y)$$
 where $x = g(t)$, $y = g_2(t)$ then
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$$

3)
$$f_{y} u = f(x,y)$$
 where y is a function g x then
$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial x} \quad \text{and} \quad \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial y}$$

$$\frac{du}{dy} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial u}{\partial y}$$

Defferentiation of Implicit Junction:

If f(n,y)=c where c may be zero or non-zero is an implicit function of n & y then

$$\frac{dy}{dn} = \frac{\partial y}{\partial x}$$

Tupo T

to the first that the second of the second

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

Type = 1

Now
$$u = n^2 + y^2$$
 then find total differential of u .

Solon: $u = x^2 + y^2$
 $\frac{\partial u}{\partial x} = 2\pi$.

 $\frac{\partial u}{\partial y} = 2y$.

Find
$$\frac{dy}{dt}$$
 $\frac{y}{y}$ $u = x^2 + y^2 + 3^2$ where $x = e^t$, $y = e^t$ sint.

 $3 = e^t \cos t$.

Soln: $u = x^2 + y^2 + 3^2$.

 $\frac{\partial u}{\partial x} = 2x$, $\frac{\partial u}{\partial y} = 2y$, $\frac{\partial u}{\partial 3} = 23$.

 $\frac{\partial u}{\partial x} = e^t$, $y = e^t$ sint. , $3 = e^t \cos t$.

 $\frac{dx}{dt} = e^t$ $\frac{dy}{dt} = e^t \cos t + e^t$ sint $\frac{dz}{dt} = -e^t$ si

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV FUNCTIONS OF SEVERAL VARIABLES

$$\frac{du}{dt} = \frac{\partial u}{\partial n} \cdot \frac{\partial u}{\partial t} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial t}$$

$$= 2n \cdot e^{t} + 2y \cdot (e^{t} \cos t + e^{t} \sin t) + 2z \cdot (e^{t} \cos t - e^{t} \sin t)$$

$$= 2e^{t} \cdot e^{t} + 2e^{t} \cdot \sinh (e^{t} \cos t + e^{t} \sin t) + 2e^{t} \cos t (e^{t} \cos t - e^{t} \sin t)$$

$$= 2e^{2t} + 2e^{2t} \cdot \sinh (\cos t + 2e^{2t} \sin^{2} t + 2e^{2t} \cos^{2} t - 2e^{2t} \cot t)$$

$$= 2e^{2t} + 2e^{2t} = 4e^{2t}$$

$$\frac{\partial \ln x}{\partial y} = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{$$