

# **SNS COLLEGE OF TECHNOLOGY**

**Coimbatore-35 An Autonomous Institution** 

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**

# **19ECB302–VLSI DESIGN**

III YEAR/ V SEMESTER

**UNIT 4 – VLSI TESTING** 

TOPIC 6 – BIST





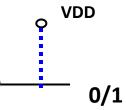
# **OUTLINE**



- INTRODUCTION
- **BASIC CONCEPT OF TESTING**
- PRINCIPLE OF TESTING
- DIFFICULTIES IN TESTING
- HOW TO DO TESTING
- **CIRCUIT MODELING**  $\bullet$
- AUTOMATIC TEST PATTERN GENERATION (ATPG)
- **DIFFICULTIES IN TEST GENERATION-2 TYPES**
- **TESTABLE DESIGN** •
- ACTIVITY
- BUILT-IN-SELF TEST (BIST) ullet
- RANDOM NUMBER GENERATOR (RNG)
- SIGNATURE ANALYZER (SA)
- MEMORY BIST ARCHITECTURE  $\bullet$
- **CPU TEST CONTROL ARCHITECTURE**
- **TESTING METHODS**
- ASSESSMENT
- SUMMARY & THANK YOU

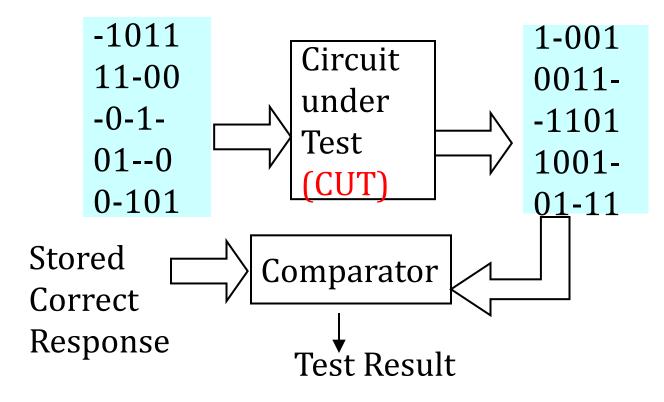





# **BASIC CONCEPT OF TESTING**

### **<u>Testing</u>**: To tell whether a circuit is good or bad




**Related fields <u>Verification</u>**: To verify the correctness of a design **<u>Diagnosis</u>**: To tell the faulty site **<u>Reliability</u>:** To tell whether a good system will work correctly or not after some time. **<u>Debug</u>**: To find the faulty site and try to eliminate the fault







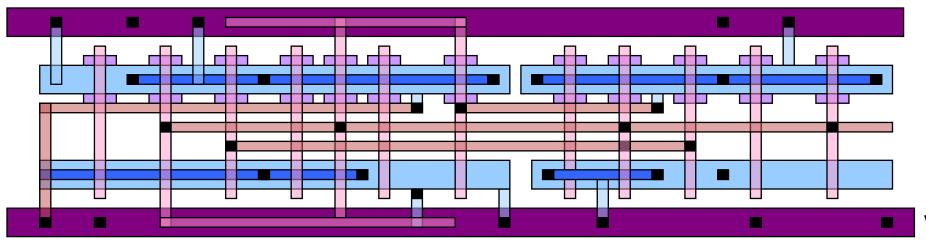
# **PRINCIPLE OF TESTING**



- Testing typically consists of
  - Applying set of test stimuli (input patterns, test vectors) to inputs of circuit under test (CUT), and
  - Analyzing output responses
- The quality of the tested circuits will depend upon the thoroughness of the test ulletvectors










# **DIFFICULTIES IN TESTING**

- Fault may occur anytime
  - DesignProcess

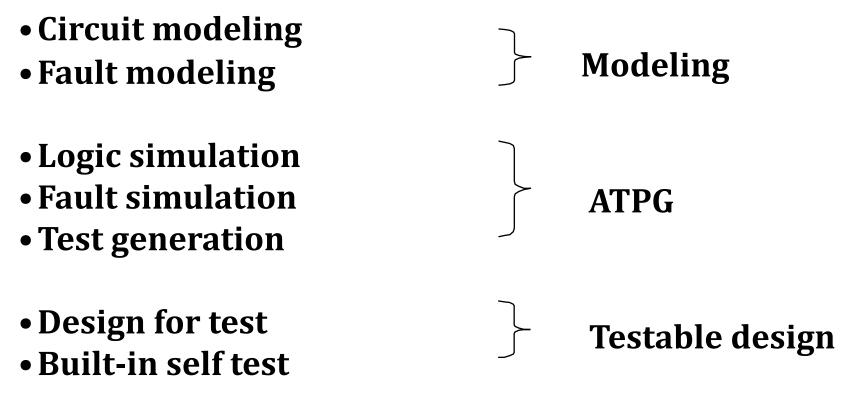
  - PackageField
- Fault may occur at any place



- VLSI circuit are large
  Most problems encountered in testing are NP-complete
- I/O access is limited

11/24/2023

BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT




Vss



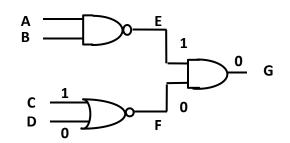
# **HOW TO DO TESTING**

From designer's point of view:



• Synthesis for testability

11/24/2023



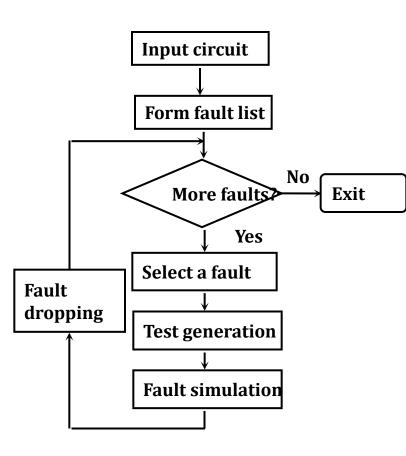



# **CIRCUIT MODELING**

• Functional model--- logic function - f(x1,x2,...)=... - Truth table • Behavioral model--- functional + timing - f(x1,x2,...)=... , Delay = 10

• Structural model--- collection of interconnected components or elements




11/24/2023

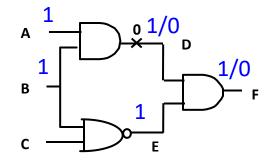




# **AUTOMATIC TEST PATTERN GENERATION**

**Y** ATPG: Given a circuit, identify a set of test vectors to detect all faults under consideration.








# **TEST GENERATION**

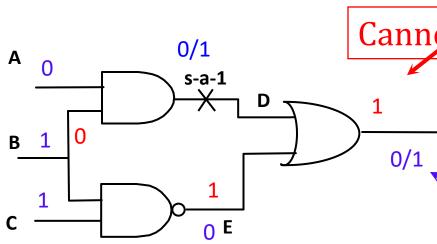
• Given a fault, identify a test to detect this fault

### **Example:**



To detect D s-a-0, D must be set to 1. Thus A=B=1.

To propagate fault effect to the primary output E must be 1. Thus C must be 0. **Test vector: A=1, B=1, C=0** 




9/27



## **DIFFICULTIES IN TEST GENERATION**

**1. Reconvergent fan-out** 



11/24/2023

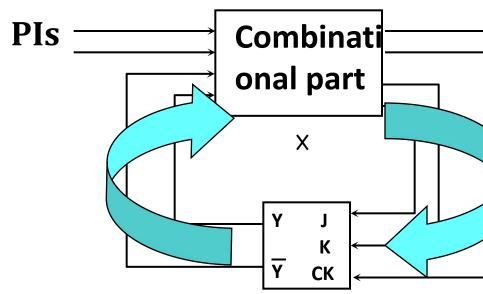
BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT





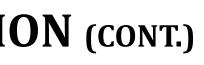
### Cannot detect the fault





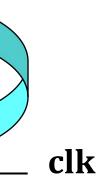






# **DIFFICULTIES IN TEST GENERATION (CONT.)**

2. Sequential test generation




11/24/2023

BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT





POs



11/27



# **TESTABLE DESIGN**

- Design for testability (DFT)
  - ad hoc techniques
  - Scan design
  - Boundary Scan
- Built-In Self Test (BIST)
  - Random number generator (RNG)
  - Signature Analyzer (SA)
- Synthesis for Testability

11/24/2023





# **CLASS ROOM ACTIVITY**

### **HOW CAN YOU DO YOUR INTERVIEW PREPARATION ????**

Tell about yourself

Resume/CV - short & Neat

Aptitude,GD,Technical skill,HR interview

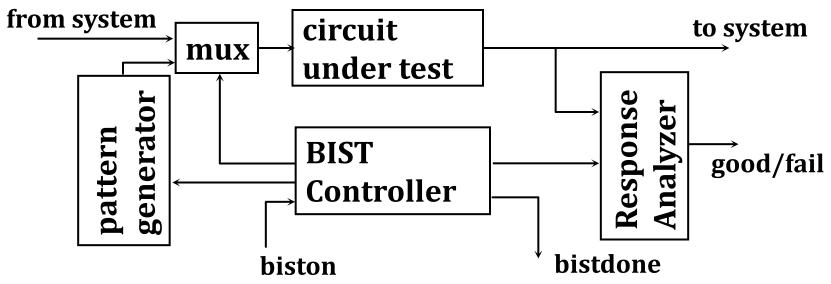
Tell about your final year project

Co & Extra curricular activities

Know about your company applying & Your job profile-Skill matching

Self confidence ,Body language

Knowledge ,Skill,Attitude,Team work, Adaptability etc...




13/2



# **BUILT-IN-SELF TEST (BIST)**

Ÿ Places the job of device testing inside the device itself Ÿ Generates its own stimulus and analyzes its own response



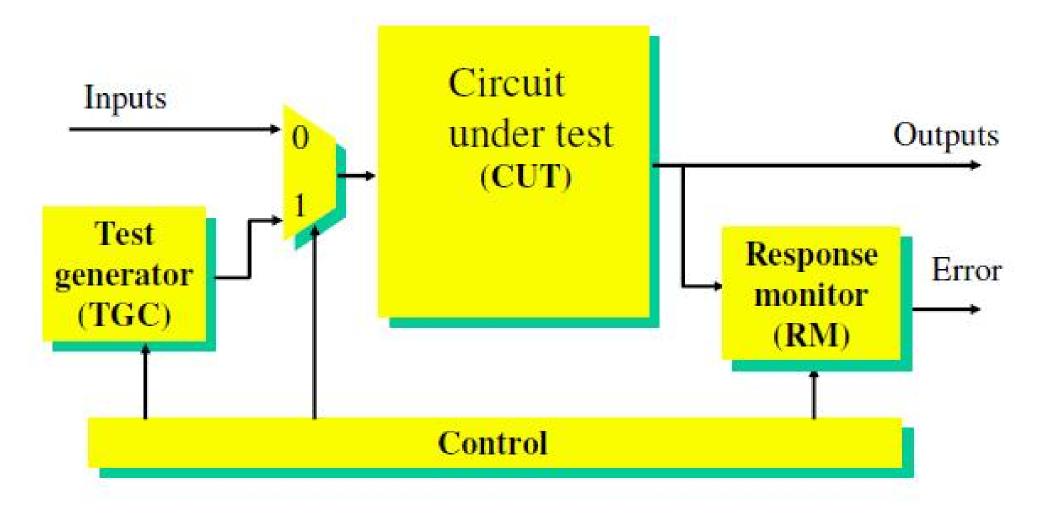






# **BASIC CONCEPTS**

- We add extra hardware to the chip for test generation and response evaluation
  - •Done on chip INSIDE
  - •Additional hardware overload
- •External control pins
- •Input pin-Test control(TC)
- •Output pin-Good/Bad





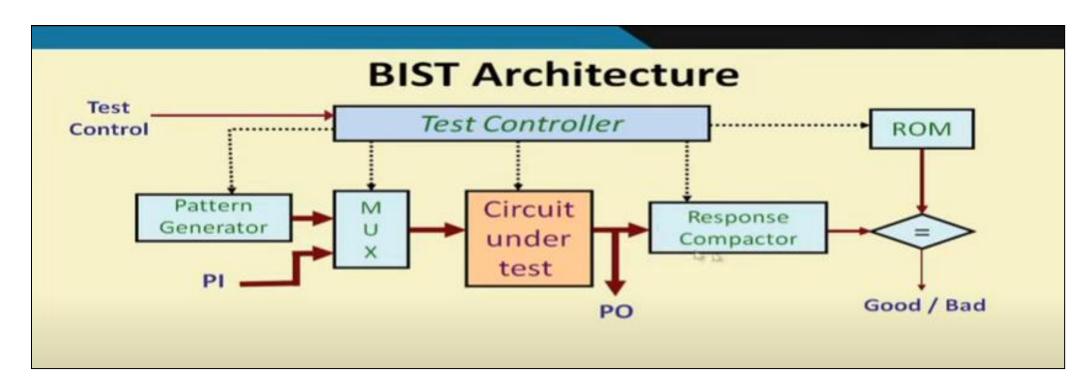

# **BUILT-IN-SELF TEST (BIST)**

Built-in self-test lets blocks test themselves

- Generate pseudo-random inputs to comb. logic
- Combine outputs into a *syndrome*
- With high probability, block is fault-free if it produces





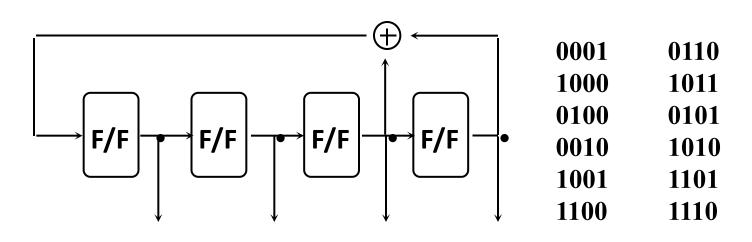







# **BUILT-IN-SELF TEST (BIST) ARCHITECTURE**

- Ťwo major tasks
  - Test pattern generation
  - Test result compaction
- Usually implemented by linear feedback shift register
- •NETLIST -----Test Generation -----Test Vectors
- •Error input----CUT----Error output
- •Automated Test Equipment ATE (Loaded Test Pattern) --- CUT---- Output given to ATE










# **RANDOM NUMBER GENERATOR (RNG)**



**1.** Generate "pseudo" random patterns

2. Period is  $2^n - 1$ 

3.Pseudo Random pattern is an input test vectors

4.Facult coverage done by Fault simulation

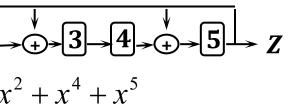
-Test length is large

--much faster test generation

--Continue until fault coverage 60-80%then switch to ATPG



- 1111 0111
- 0011
- 0001
- (repeat)


# **SIGNATURE ANALYZER (SA)**



| Input sequen        | ice 10101111 (          | 8 bits) $\rightarrow \oplus +$ | 1→2→          |
|---------------------|-------------------------|--------------------------------|---------------|
| $G(x) = 1 + x^2 + $ | $x^4 + x^5 + x^6 + x^6$ | $x^7 \qquad P(x)$              | $= 1 + x^{2}$ |
| Time                | Input stream            | Register contents              | s Outp        |
| 0                   | 10101111                | 00000 ←                        | — Initi       |
| 1                   | $1\ 0\ 1\ 0\ 1\ 1\ 1$   | $1\ 0\ 0\ 0\ 0$                |               |
|                     |                         |                                |               |
|                     |                         |                                |               |
| 5                   | 101                     | $0\ 1\ 1\ 1\ 1$                |               |
| 6                   | 10                      | 00010                          | 1             |
| 7                   | 1                       | $0\ 0\ 0\ 0\ 1$                | 01            |
| 8                   |                         | 00101                          | 10            |
|                     |                         |                                |               |
|                     |                         | Remainder                      | Qu            |

 $R(x) = x^2 + x^4$ 





put stream tial state

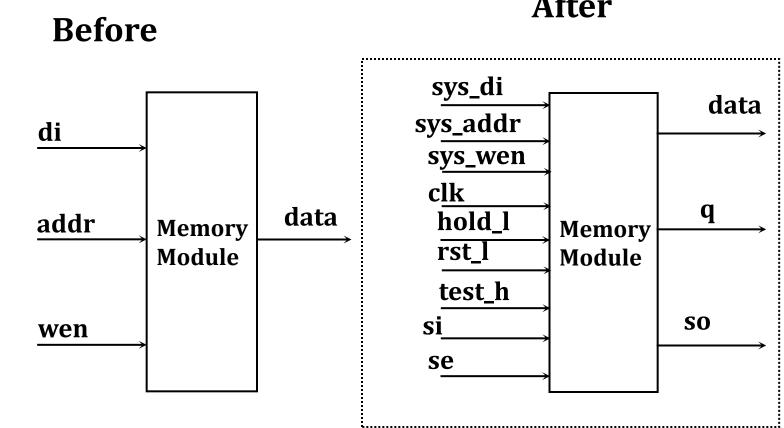
1 Quotient

 $1 + x^2$ 

19/27



# **SIGNATURE ANALYZER (SA) (CONT.)**


- A LFSR performs polynomial division  $P(x): x^5 + x^4 + x^2 + 1$  $\times Q(x): x^2 + 1$  $x^{7} + x^{6} + x^{4} + x^{2} + x^{5} + x^{4} + x^{2} + 1$  $=x^{7}+x^{6}+x^{5}+1$  $P(x)Q(x) + R(x) = x^7 + x^6 + x^5 + x^4 + x^2 + 1 = G(x)$
- Probability of aliasing error =  $1/2^n$  (n: # of FFs)

BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT

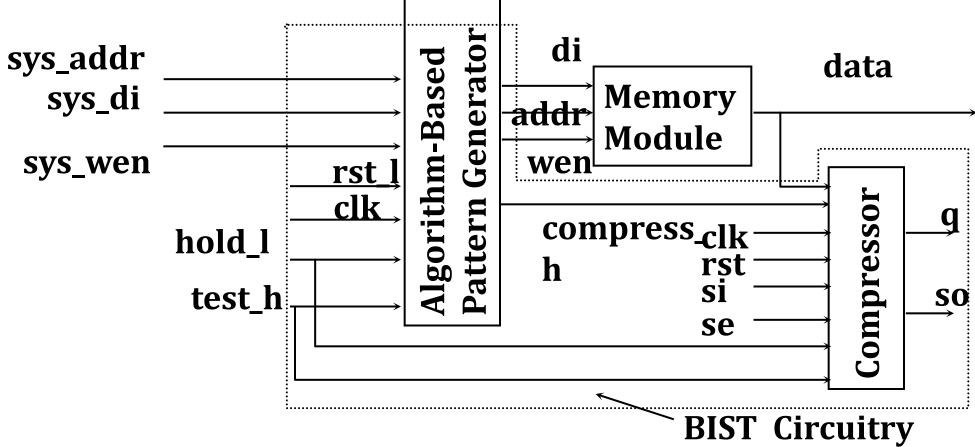
11/24/2023



**MEMORY BIST ARCHITECTURE** 



11/24/2023


BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT



### After

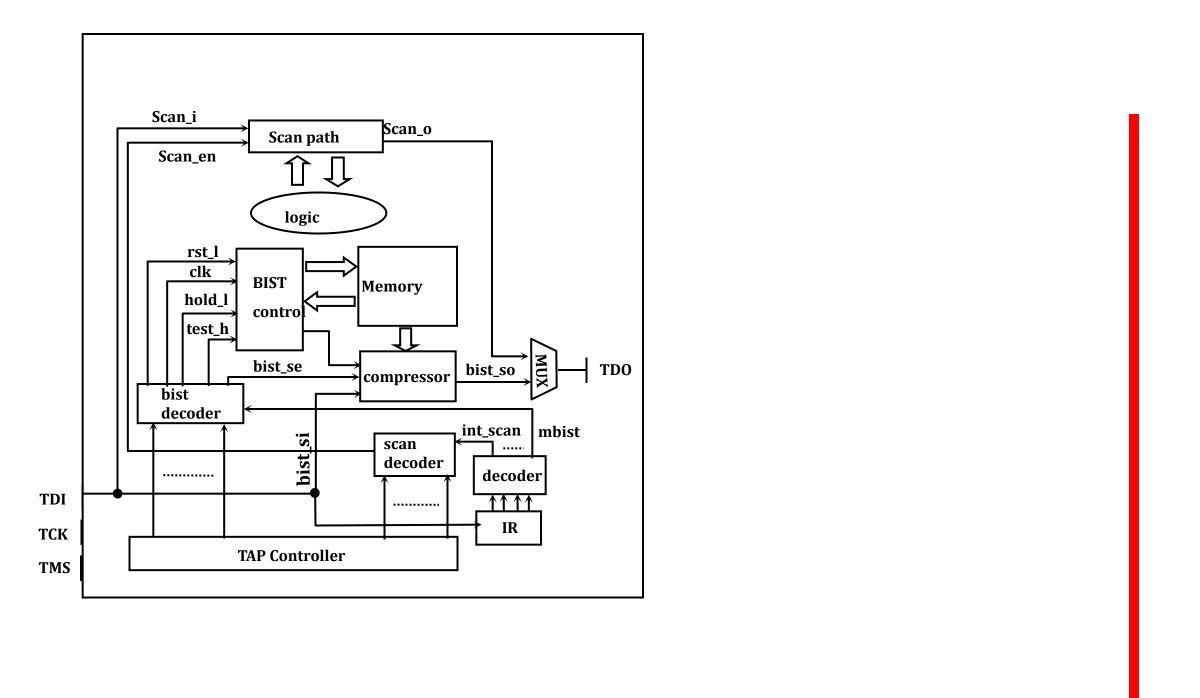
## **MEMORY BIST ARCHITECTURE (CONT.)**





Υ

BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT


11/24/2023







# **CPU TEST CONTROL ARCHITECTURE**



Υ

11/24/2023





# **NEEDS OF BIST**

- Field Test & Diagnosis(Software Test)-not needed expensive ATE
  - •Low hardware fault coverage
  - •Poor diagnostic resolution
  - •Time consuming
- •In Hardware –Lower system test effort & better diagnosis
  - •Improve system maintenance & repair

 $\mathbf{A}$ 

11/24/2023





# **TESTING METHODS**

- A 32-bit adder --- ATPG
- A 32-bit counter --- Design for testability + ATPG
- A 32MB Cache memory --- BIST
- A 10<sup>7</sup>-transistor CPU --- All test techniques
- An SOC





## ASSESSMENT

- **1.** How can you make test generation?
- How can you generate random number? 2.
- Why we use Signature Analyser in BIST? 3.
- 4. List out the basic concepts of BIST
- Draw the architecture of BIST. 5.
- Match all correctly 6.
  - A 32-bit adder --- BIST
  - A 32-bit counter --- All test techniques
  - A 32MB Cache memory --- ATPG
  - A 10<sup>7</sup>-transistor CPU --- Design for testability + ATPG





# **SUMMARY & THANK YOU**

11/24/2023

BIST/19ECB302-VLSI DESIGN/J.Prabakaran/AssistantProfessor/ECE/SNSCT



27/27