

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB302–VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 4 – VLSI TESTING

TOPIC 3: MANUFACTURING TEST PRINCIPLES

OUTLINE

- Testing
 - -Logic Verification
 - -Silicon Debug
 - -Manufacturing Test
- Fault Models
- Activity
- Observability and Controllability
- Summary

11/24/2023

TESTING-NEEDS

•Testing is one of the most expensive parts of chips •Logic verification accounts for > 50% of design effort for many chips •Debug time after fabrication has enormous opportunity cost

•Shipping defective parts can sink a company

Example: Intel FDIV bug

•Logic error not caught until > 1M units shipped

•Recall cost \$450M (!!!)

LOGIC VERIFICATION

•Does the chip simulate correctly?

- •Usually done at HDL level
- •Verification engineers write test bench for HDL
 - •Can't test all cases
 - •Look for corner cases
 - •Try to break logic design
- •Ex: 32-bit adder
 - •Test all combinations of corner cases as inputs:
 - •0, 1, 2, 2³¹-1, -1, -2³¹, a few random numbers
- •Good tests require ingenuity

Silicon Debug

•Test the first chips back from fabrication

- •If you are lucky, they work the first time
- •If not...????????
- •Logic bugs vs. electrical failures
 - •Most chip failures are logic bugs from inadequate simulation
 - •Some are electrical failures
 - •Crosstalk
 - •Dynamic nodes: leakage, charge sharing
 - •Ratio failures
 - •A few are tool or methodology failures (e.g. DRC)
- •Fix the bugs and fabricate a corrected chip

MANUFACTURING TEST

A speck of dust on a wafer is sufficient to kill chip *Yield* of any chip is < 100% Must test chips after manufacturing before delivery to customers to only ship good parts Manufacturing testers are very expensive Minimize time on tester Careful selection of *test vectors*



TESTING YOUR CHIP

If you don't have a multimillion dollar tester: Build a breadboard with LED's and switches Hook up a logic analyzer and pattern generator Or use a low-cost functional chip tester

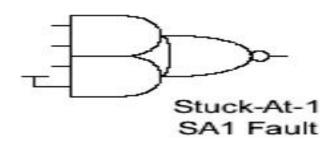
MANUFACTURING TEST PRINCIPLESS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

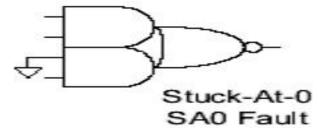
TESTOSTERICS

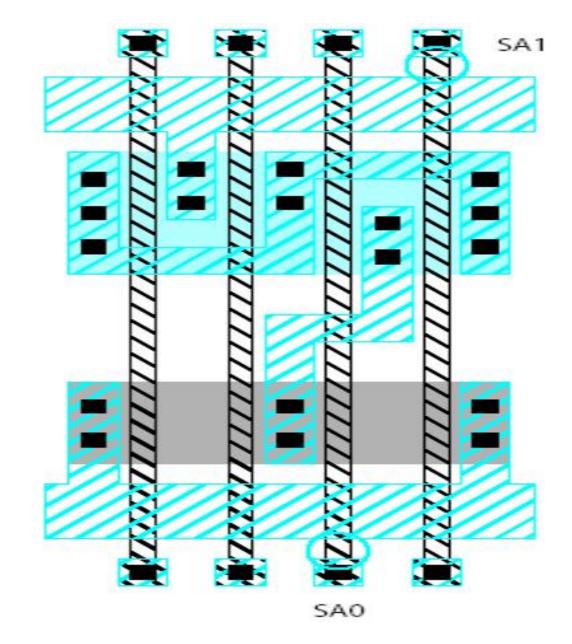
Ex: Testoster ICs functional chip tester Designed by clinic teams and David Diaz at HMC Reads your IRSIM test vectors, applies them to your chip, and reports assertion failures

STUCK-AT FAULTS

How does a chip fail? Usually failures are shorts between two conductors or opens in a conductor This can cause very complicated behavior A simpler model: *Stuck-At* Assume all failures cause nodes to be "stuckat" 0 or 1, i.e. shorted to GND or V_{DD} Not quite true, but works well in practice







11/24/202<mark>3</mark>

STUCK-AT FAULTS-EXAMPLES

ACTIVITY

SHAPE JOINING

11/24/202<mark>3</mark>

OBSERVABILITY & CONTROLLABILITY

Observability: ease of observing a node by watching external output pins of the chip *Controllability*: ease of forcing a node to 0 or 1 by driving input pins of the chip

Combinational logic

-observe and control

-Finite state machines –difficult (requiring many cycles to enter desired state)

if state transition diagram is not known to the test engineer

MANUFACTURING TEST PRINCIPLESS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

11/24/202

TEST PATTERN GENERATION

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- Good observability and controllability reduces number of test vectors required for manufacturing test.
 - Reduces the cost of testing
 - Motivates design-for-test

TEST EXAMPLE

		SA1	SA0
•	A ₃	{0110}	{1110}
•	A ₂	{1010}	{1110}
•	A_1	{0100}	{0110}
•	A ₀	{0110}	{0111}
•	n1	{1110}	{0110}
•	n2	{0110}	{0100}
•	n3	{0101}	{0110}
•	Υ	{0110}	{1110}

• Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

11/24/202<mark>3</mark>

Υ

MANUFACTURING TEST PRINCIPLESS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

FABRICATION

Think about testing from the beginning Simulate as you go Plan for test after fabrication

"If you don't test it, it won't work! (Guaranteed)"

11/24/202

 \mathbf{A}

ASSESSMENT

- How can you test the Loaded materials weight in lorry Say with examples
- 2. Struck at fault 0 vs 1
- 3. List out the Testing Needs?
- 4. Any other Examples of Testing
- 5. Differentiate Observability & controllability

SUMMARY & THANK YOU

11/24/202<mark>3</mark>

MANUFACTURING TEST PRINCIPLESS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

