

11/24/202

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB302–VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 4 – VLSI TESTING

TOPIC 1 & 2–VLSI TESTING -NEEDS FOR TESTING

SCT

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

OUTLINE

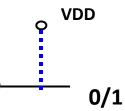
- INTRODUCTION
- BASIC CONCEPT OF TESTING
- PRINCIPLE OF TESTING \bullet
- DIFFICULTIES IN TESTING \bullet
- HOW TO DO TESTING \bullet
- **CIRCUIT MODELING** \bullet
- AUTOMATIC TEST PATTERN GENERATION (ATPG) •
- **DIFFICULTIES IN TEST GENERATION-2 TYPES**
- **TESTABLE DESIGN** \bullet
- ACTIVITY
- **TESTING METHODS** \bullet
- NEEDS OF TESTING \bullet
- **DESIGN VERIFICATION** \bullet
- YIELD AND REJECT RATE •
- **ELECTRONIC SYSTEM MANUFACTURING**
- **ELECTRONIC SYSTEM MANUFACTURING**
- **TESTING AND QUALITY** •
- ASSESSMENT \bullet
- **SUMMARY & THANK YOU** \bullet

BASIC CONCEPT OF TESTING

<u>Testing</u>: To tell whether a circuit is good or bad

Related fields

<u>Verification</u>: To verify the correctness of a design


<u>Diagnosis</u>: To tell the faulty site

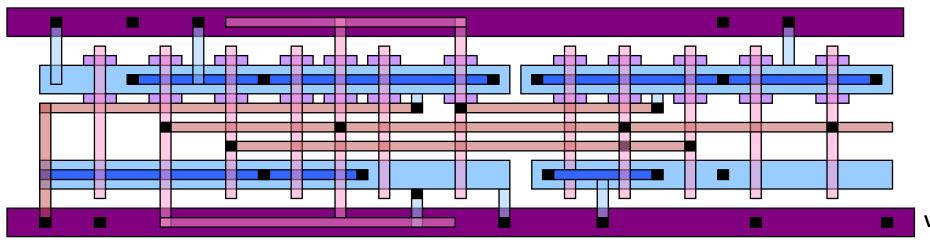
<u>Reliability</u>: To tell whether a good system will work

correctly or not after some time.

<u>Debug</u>: To find the faulty site and try to eliminate the fault

PRINCIPLE OF TESTING

- Testing typically consists of
 - Applying set of test stimuli (input patterns, test vectors) to inputs of circuit under test (CUT), and
 - Analyzing output responses
- The quality of the tested circuits will depend upon the thoroughness of the test vectors

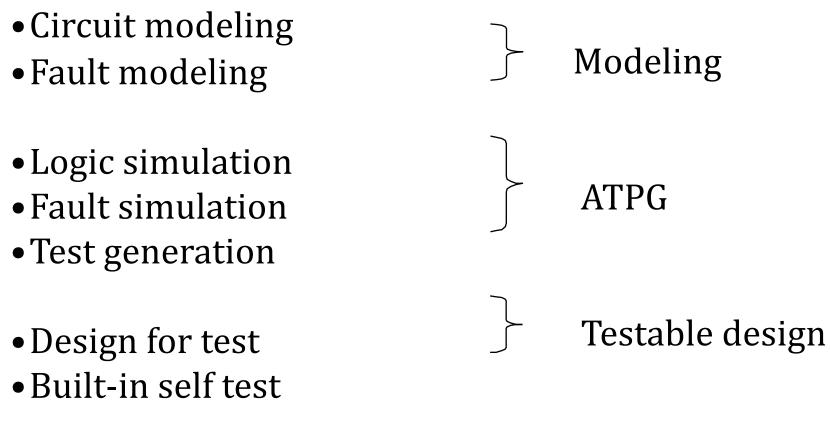


DIFFICULTIES IN TESTING

- Fault may occur anytime

 - Design
 Process
 Package
 Field
- Fault may occur at any place

- VLSI circuit are large Most problems encountered in testing are NP-complete
- I/O access is limited



Vss

HOW TO DO TESTING

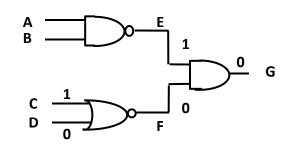
From designer's point of view:

• Synthesis for testability

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

CIRCUIT MODELING

• Functional model--- logic function


- f(x1,x2,...)=...

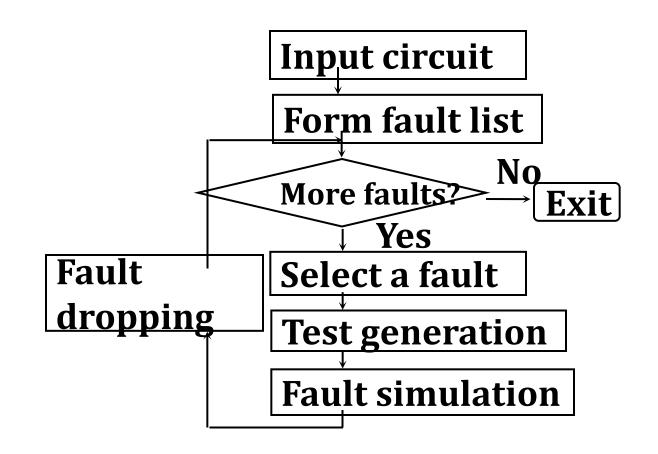
- Truth table

• Behavioral model--- functional + timing

- f(x1,x2,...)=..., Delay = 10

• Structural model--- collection of interconnected components or elements

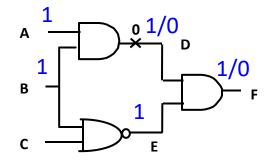
VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT


11/24/2023

AUTOMATIC TEST PATTERN GENERATION

Ÿ ATPG: Given a circuit, identify a set of test vectors to detect all faults under consideration.

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT



TEST GENERATION

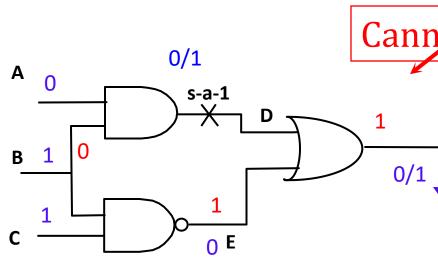
• Given a fault, identify a test to detect this fault

Example:

To detect D s-a-0, D must be set to 1. Thus A=B=1.

To propagate fault effect to the primary output

E must be 1. Thus C must be 0.

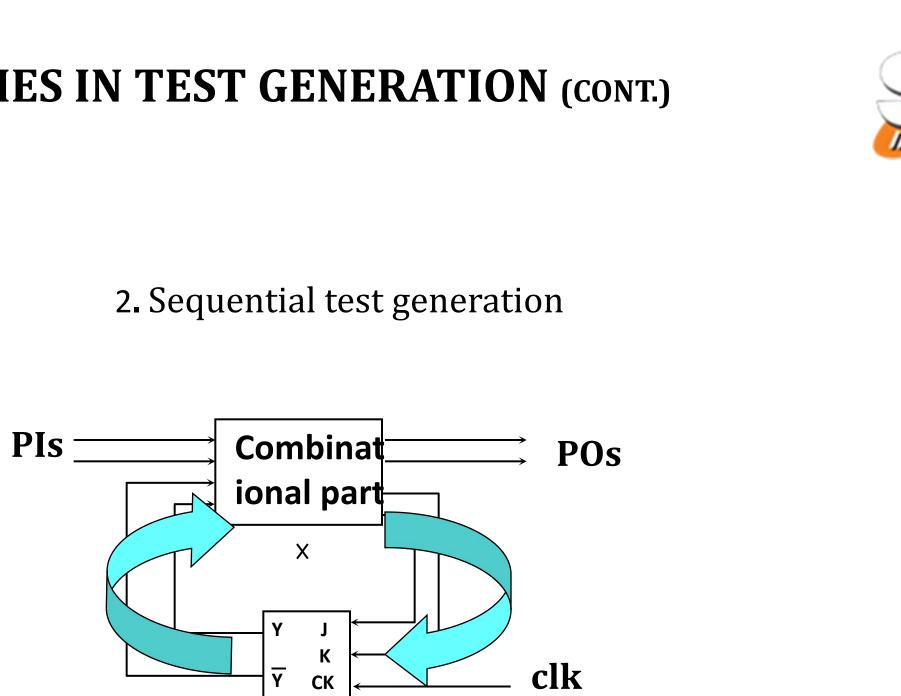

Test vector: A=1, B=1, C=0

DIFFICULTIES IN TEST GENERATION

1. Reconvergent fan-out

11/24/2023

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT



Cannot detect the fault

Fault detected

DIFFICULTIES IN TEST GENERATION (CONT.)

11/24/2023

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

TESTABLE DESIGN

- Design for testability (DFT)
 - ad hoc techniques
 - Scan design
 - Boundary Scan
- Built-In Self Test (BIST)
 - Random number generator (RNG)
 - Signature Analyzer (SA)
- Synthesis for Testability

CLASS ROOM ACTIVITY

Tell about yourself-any four students

To analyze how confident you are and how you present yourself. The best way to answer this common interview question is to tell the hiring manager about your education and family background.

However, this should not look like your life's story and you should quickly concentrate on sharing a bit about your strengths that build the platform for further discussion about your suitability for the job opening.

Bonus Tips:

Don't narrate what is already mentioned in your CV

Focus more on talking about your achievements and learning

Keep it short

11/24/2023

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

'How to Answer the "Tell Me About Yourself" Interview Question

TESTING METHODS

- A 32-bit adder --- ATPG
- A 32-bit counter --- Design for testability + ATPG
- A 32MB Cache memory --- BIST
- A 10⁷-transistor CPU --- All test techniques
- An SOC

- •Moore's Law results from decreasing feature size (dimensions)
 - -from 10s of μm to 10s of nm for transistors and interconnecting wires
- •Operating frequencies have increased from 100KHz to several GHz
- •Decreasing feature size increases probability of defects during manufacturing process
 - •A single faulty transistor or wire results in faulty IC
 - •Testing required to guarantee fault-free products

•*Rule of Ten*: cost to detect faulty IC increases by an order of magnitude as we move from:

•device \rightarrow PCB \rightarrow system \rightarrow field operation

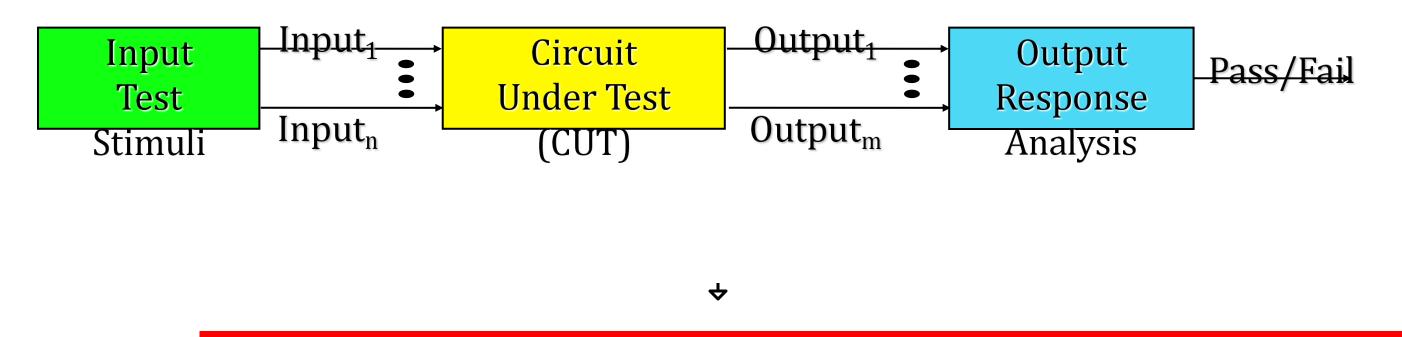
•Testing performed at all of these levels

•Testing also used during

•Manufacturing to improve yield

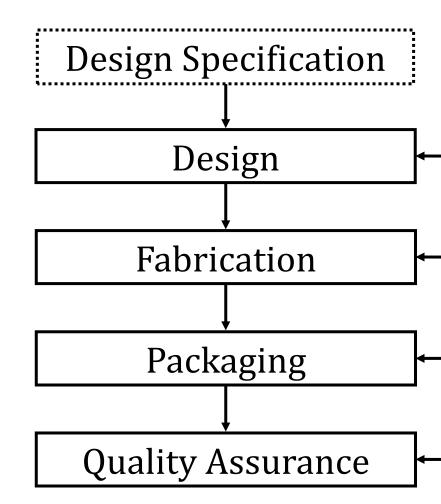
•Failure mode analysis (FMA)

•Field operation to ensure fault-free system operation


•Initiate repairs when faults are detected

 \mathbf{A}

- Testing typically consists of
 - Applying set of test stimuli to
 - Inputs of *circuit under test* (CUT), and
 - Analyzing output responses
 - If incorrect (fail), CUT assumed to be faulty
 - If correct (pass), CUT assumed to be fault-free

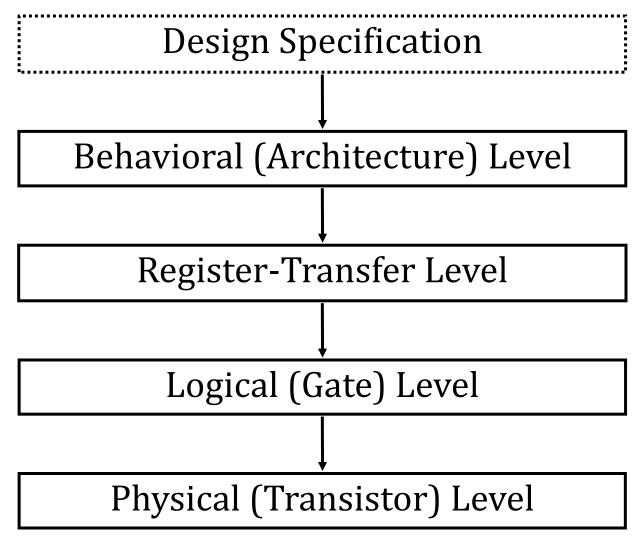

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

faulty fault-free

- Design verification targets • design errors
 - Corrections made prior to fabrication
- Remaining tests target • manufacturing defects
 - A defect is a flaw or physical imperfection that can lead to a fault

Design Verification

Wafer Test


Package Test

Final Testing

DESIGN VERIFICATION

- Different levels of • abstraction during design
 - CAD tools used to synthesize design from RTL to physical level
- Simulation used at various level to test for
 - Design errors in behavioral or RTL
 - Design meeting system timing requirements after synthesis

YIELD AND REJECT RATE

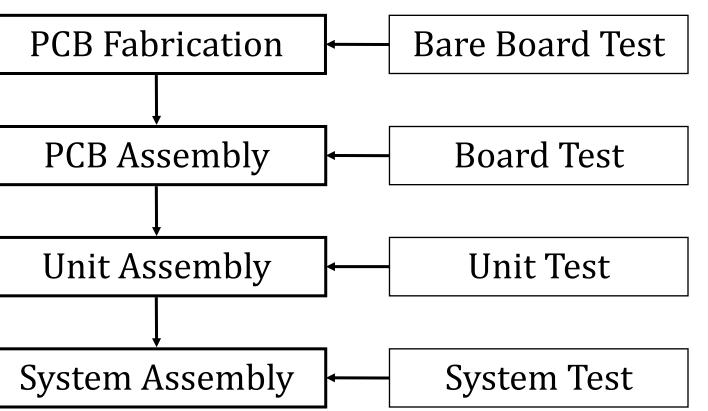
- We expect faulty chips due to manufacturing defects
 - Called yield

number of acceptable parts vield =total number of parts fabricated

- 2 types of yield loss
 - Catastrophic due to random defects
 - Parametric due to process variations
- Undesirable results during testing ullet
 - Faulty chip appears to be good (passes test)
 - Called reject rate
 - Good chip appears to be faulty (fails test)

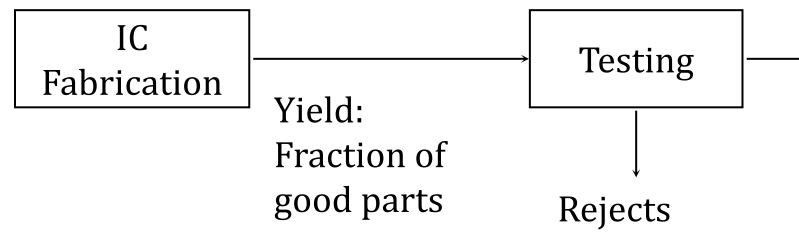
reject rate =

Due to poorly designed tests or lack of DFT



number of faulty parts passing final test total number of parts passing final test

ELECTRONIC SYSTEM MANUFACTURING


- A system consists of
 - PCBs that consist of
 - VLSI devices
- PCB fabrication similar to VLSI fabrication
 - Susceptible to defects
- Assembly steps also susceptible to defects
 - Testing performed at all stages of manufacturing

TESTING AND QUALITY

- Quality of shipped parts is a function of ulletyield Y and the test (fault) coverage T
- Defect level (DL, reject rate in textbook): • fraction of shipped parts that are defective

Shipped Parts

Quality: Defective parts per million (DPM)

ASSESSMENT

- How can you make test generation? 1.
- How can you generate random number? 2.
- List out the needs of testing 3.
- Define Yield and Reject Rate 4.
- 5. Match all correctly

A 32-bit adder --- BIST

A 32-bit counter --- All test techniques

A 32MB Cache memory --- ATPG

A 10⁷-transistor CPU --- Design for testability + ATPG

SUMMARY & THANK YOU

11/24/2023

VLSI TESTING & NEEDS//19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

