

11/24/202

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB302–VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 2 – COMBINATIONAL LOGIC CIRCUITS

TOPIC 8 – POWER DISSIPATION

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

OUTLINE

- INTRODUCTION
- MOTIVATION TO ESTIMATE POWER DISSIPATION
- SOURCES OF POWER DISSIPATION
- DYNAMIC POWER DISSIPATION
- ACTIVITY
- STATIC POWER DISSIPATION
- METRICS
- ASSESSMENT
- SUMMARY

INTRODUCTION - WHY WORRY ABOUT POWER?

Battery-powered devices •GSM phone, UMTS phone, MP3 player, **PDAs**

•Complexity increases

•Energy budget remains the same

Complex high-speed devices

•Thermal problems

•Expensive packaging

11/24/2023

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

- Power dissipation affects
- •Performance
- •Reliability
- Packaging
- •Cost
- •Portability

OVERVIEW OF POWER CONSUMPTION

> The total power dissipation in CMOS Circuit can be expressed in three main components.

- Static power dissipation (due to leakage current when the 1. circuit is idle).
- 2. Dynamic power dissipation (When the circuit is switching).
- Short Circuit power dissipation during switching of transistors. 3.

OVERVIEW OF POWER CONSUMPTION

- • $P_{total} = P_{dynamic} + P_{short-circuit} + P_{leakage} + P_{static}$ Dynamic (Switching) Power Consumption (P_{dynamic}) •Charging and discharging capacitors Short Circuit Power Consumption (**P**_{short-circuit}) •Short circuit path between supply rails during switching Leakage Power Consumption (P_{leakage})
 - •Leaking diodes and transistors
- \succ Static Power Consumption (\mathbf{P}_{static})

DYNAMIC POWER

Dynamic power dissipation occurs when the MOS transistor switches to charge and discharge load capacitances. \succ Consumes most of the power in CMOS Circuits. \geq One cycle involves a rising and falling output. \succ On rising output, charge $Q = CV_{DD}$ is required \succ On falling output, charge is dumped to GND Vdd

Vout

DYNAMIC POWER

> Energy Per Transition

- Not a function of frequency!
- 50% dissipated by Ron
- 50% stored/delivered in/by CL

>Dynamic Power

 $P_{dynamic} = C_L \times V_{DD}^2 \times f$

- C_L Total output node capacitance.
- V_{DD}^{2} Supply voltage at which the output capacitance charges
- f- Operating frequency.
- Not a function of transistor sizes!
- Need to reduce C_L , V_{DD} , and f to reduce power.

SHORT CIRCUIT CURRENT (1/2)

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- $\sim 15\%$ of dynamic power $-\sim 85\%$ to charge capacitance $C_{\rm L}$
- NMOS and PMOS on
 - -Both transistors in saturation
- Long rise / fall times
 - -Slow input transition
 - –Increase short circuit current

Make input signal transitions fast to save power!

11/24/2023

Large capacitive load

Small capacitive load

SHORT CIRCUIT CURRENT (2/2)

Because of finite slope of input signal, there is a period when both PMOS and NMOS device are "on" and create a path from supply to ground

The power dissipation due to short circuit currents is minimized by matching the rise/fall times of the input and output signals.

LEAKAGE

- Sub-threshold current
 - –Transistor conducts below Vt
 - -For sub-micron relevant
 - VDD / Vt ratio smaller
 - Can dominate power consumption!
 - Especially in idle mode.
 - Charge nodes fully to VDD!
 - Discharge nodes completely to GND!
- Drain leakage current
 - -Reverse biased junction diodes

SUB-THRESHOLD LEAKAGE COMPONENT

Leakage control is critical for low-voltage operation

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

11/24/2023

SOURCE OF LEAKAGE CURRENT

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

11/24/2023

STATIC POWER CONSUMPTION

- Pseudo-NMOS logic style
 - –PMOS as resistor
 - –PDN as static CMOS logic
- Static current
 - -When output low
- Power consumption
 - -Even without switching activity

POWER DISSIPATION FOR VARIOUS CMOS CIRCUITS

Chip	Intel 386	DEC Alpha 21064	Cell based ASIC
Minimum feature size	1.5µm	0.75µm	0.5µm
Number of gates	36,808	263,666	10,000
f _{CLK}	16MHz	200MHz	110MHz
V _{DD}	5V	3.3V	3V
P _{total}	1.41W	32w	0.8w
Logic gates	32%	14%	9%
Clock Distribution	9%	32%	30%
Interconnect	28%	14%	15%
I/O drivers	26%	37%	43%

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

DESIGN FOR LOW POWER

• Good Ideas

- -On all levels
 - Software
 - Algorithm
 - Architecture
 - Gate
 - Transistor
 - Process technology

Bad Ideas

• Apply one method

• Do it as late as possible

DESIGN FOR LOW POWER

- System Level
 - –Power management
 - Power-down mode
 - Global clock gating
 - Dynamic voltage scaling
 - -Hardware/software co-design
 - Early (simplified) power estimation
 - Partitioning of functionality
 - Minimum instructions for execution not code size

Algorithm

- -Arithmetic
 - Choice of number representation
 - Pre-computation
- -Concurrency
 - Parallelism Trade area for power
 - To reduce frequency

DESIGN FOR LOW POWER

- Architecture
 - -Pipelining
 - supply voltage instead
 - -Redundancy
 - activity (buses)
 - -Data encoding
 - Energy efficient state encoding
 - Example: Gray code, One hot encoding
 - -Clocking
 - Gated clocks, Self-timed circuits

• Allows voltage scaling: Increased throughput because frequency could be increased => lower

• Minimize shared resources to lower signal

VOLTAGE SCALING

• Delay

- -Increased
- Power delay product
 - -Improved

VOLTAGE SCALING

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

VOLTAGE SCALING

- Dual voltage supply
- Internal voltage
 - -Reduced internal voltage 1.2V
 - For low power operation
- External voltage
 - -Compatible IO voltage 3.3V
 - To interface other ICs

VARIABLE-THRESHOLD CMOS (VTCMOS) CIRCUITS

- An efficient way to reduce **sub** threshold leakage currents
 - -Require twin-well or triple-well CMOS technology to apply different substrate bias voltages.
 - -Separate power pins may be required if the substrate bias voltages level are not generated on-chip.

MULTIPLE-THRESHOLD CMOS (MTCMOS) CIRCUITS

- Active Mode
 - -High-V_T transistors are turned on.
 - -Logic gates consisting of low- V_{T} transistors can operate with low switching power dissipation and small propagation delay.
- Standby Mode
 - -High-V_T transistors are turned off, and the conduction paths can be effectively cut off.
- The series-connected standby transistors increase the overall circuit area and add extra parasitic capacitance and delay.

11/24/2023

SWITCHING ACTIVITY REDUCTION (1/5)

Power Consumption is Data Dependent

• Static Circuit

-Example 1: 2 input static NOR gate Assume P(A=1)=1/2, P(B=1)=1/2. P(out=1)=1/4 $P_{0\to 1}=P(out=0)P(out=1)=3/4\times 1/4=3/16$ $C_{eff}=3/16 \times C_L$

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of 2 input NOR gate

SWITCHING ACTIVITY REDUCTION (2/5)

Power Consumption is Data Dependent Dynamic Circuit V_{DD}

Power is Only Dissipated when Out=0!

 $C_{EFF} = P(Out=0).C_{L}$

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

11/24/2023

Power Consumption is Data Dependent

- Dynamic Circuit
 - -Example 2: 2 input dynamic NOR gate Assume P(A=1)=1/2, P(B=1)=1/2. P(out=0)=3/4 $C_{eff}=3/4 \times C_L$

Switching activity is always higher in dynamic circuits

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

SWITCHING ACTIVITY REDUCTION (4/5)**GLITCH REDUCTION**

- Dynamic hazards
 - -Caused by unbalanced delays
 - –Usually 8% 25% of dynamic power
- Suspicious for glitches
 - –Deep logic depth
 - -Ripple of carry in adder
- Relief
 - -Equalize lengths of timing paths through design.
 - -Reduce logic depth: Pipelining

(a)

(a) Implementation of a four-input parity (XOR) function using a chain structure. (b) Implementation of the same function using a tree structure which will reduce glitching transitions.

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

Signal glitching in multi-level static CMOS circuits.

SWITCHING ACTIVITY REDUCTION (5/5) PRE-COMPUTATION TECHNIQUE

REG

R2

REG

R3

 Saves power by not enabling registers R2 and R3 in half (50%) of cases

POWER DISSIPATION /19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

11/24/2023

REDUCTION OF SWITCHED CAPACITANCE

- Resource Sharing
 - -Causes switching overhead
 - -Increases effective capacitance
- Global buses vs. Local interconnect
- Locality: Shorter wires

(a)

REDUCTION OF SWITCHED CAPACITANCE

Use Minimal Transistor Where Possible

- Transistor width W
 - -Current driving capability
 - $I_D = K \times (W/L) \times \dots$
 - -Capacitance
 - $C = C_{OX} \times W \times L$
 - -Large W
 - For dominating interconnect
- Minimum transistors
 - -Lowest capacitance
 - -Optimal for low power

DESIGN FOR LOW POWER (CONT.)

- **Process Technology**
 - -V_{DD} reduction
 - -Threshold voltage
 - High threshold voltage
 - Double-threshold devices
 - -Low threshold for high speed
 - –High threshold for low power

-Silicon on insulator (SOI)

ASSESSMENT

1.List out the source of leakage current

3. Pdynamic = $CL \times \cdots \times f$

4 List out the Variable-threshold CMOS (VTCMOS) Circuits Vs Multiplethreshold CMOS (MTCMOS) Circuits

5. Switching activity is always -----(higher/lower) in dynamic circuits 6.How can you reduce glitches.

SUMMARY & THANK YOU

Power consumption Dynamic, Short circuit, Leakage, Static Design for low power Motivation for VLSI innovation On all levels! System level ... process tech. Lowest possible Supply voltage V_{DD} Effective capacitance C_{eff} Clock frequency f_{CLK}

