

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB302–VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 1 – MOS TRANSISTOR PRINCIPLE

TOPIC 4 – MOS IV CHARACTERISTICS

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

- INTRODUCTION
- MOS CAPACITOR
- TERMINAL VOLTAGES
- NMOS CUTOFF
- NMOS LINEAR
- NMOS SATURATION
- I-V CHARACTERISTICS
- CARRIER VELOCITY
- ACTIVITY
- NMOS & PMOS I-V PLOTS
- EXAMPLES
- ASSESSMENT
- SUMMARY

INTRODUCTION

- An ON transistor passes a finite amount of current -Depends on terminal voltages
 - –Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance -I = C (DV/Dt) -> Dt = (C/I) DV
 - -Capacitance and current determine speed
- Also explore what a "degraded level" really means

MOS CAPACITOR

- Gate and body form MOS capacitor
- Operating modes
 - -Accumulation
 - -Depletion
 - -Inversion

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

TERMINAL VOLTAGES

Mode of operation depends on V_g , V_d , V_s •

$$-V_{gs} = V_g - V_s$$
$$-V_{gd} = V_g - V_d$$
$$-V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$

- Source and drain are symmetric diffusion terminals -By convention, source is terminal at lower voltage ,Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - -Cutoff
 - -Linear
 - -Saturation

NMOS CUTOFF

• No channel

•
$$I_{ds} = 0$$

16/11/2023

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

NMOS LINEAR

- Channel forms
- Current flows from d to s $-e^{-}$ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

NMOS SATURATION

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source

I-V CHARACTERISTICS

In Linear region, I_{ds} depends on How much charge is in the channel? How fast is the charge moving?

16/11/2023

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

What is I & V?????

CHANNEL CHARGE

- MOS structure looks like parallel plate capacitor while operating in inversion
 - -Gate oxide channel
- $Q_{channel} = CV$
- $C = C_g = e_{ox}WL/t_{ox} = C_{ox}WL$
- $V = V_{gc} V_t = (V_{gs} V_{ds}/2) V_t$

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

CARRIER VELOCITY & ACTIVITY

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- m called mobility • v = mE

•
$$E = V_{ds}/L$$

• Time for carrier to cross channel:

$$-t = L / v$$

•Can you put the numbers 1 to 7 In the circles so that every line adds up to 12? You can use each number only once.

NMOS LINEAR I-V

• Now we know

- –How much charge Q_{channel} is in the channel
- –How much time *t* each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

 $\beta = \mu C_{\rm ox} \frac{W}{L}$

NMOS SATURATION I-V

• If $V_{gd} < V_t$, channel pinches off near drain

-When
$$V_{ds} > V_{dsat} = V_{gs} - V_t$$

• Now drain voltage no longer increases current

- for pMOS
- Mobility m_p is determined by holes -Typically 2-3x lower than that of electrons m_n

 - $-120 \text{ cm}^2/\text{V*s}$ in AMI 0.6 mm
 - process
- Thus pMOS must be wider to provide same current

 - -In this class, assume $m_n / m_p = 2$

PMOS I-V

All dopings and voltages are inverted

NMOS I-V SUMMARY

• Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} \\ \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} & V_{ds} > V_{dsat} \end{cases}$$

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

cutoff

linear

saturation

EXAMPLE

•	We will be using a 0.6 mm process for your project		25
	-From AMI Semiconductor		2
	$-t_{ox} = 100 \text{ Å}$	4	1.5
	$-m = 350 \text{ cm}^2/\text{V*s}$	^{ds} (m∕	1
	$-V_{t} = 0.7 V$	—	I
•	Plot I _{ds} vs. V _{ds}		0.5
	$-V_{gs} = 0, 1, 2, 3, 4, 5$		0
	-Use W/L = 4/2 l		Ĺ

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

IDEAL NMOS I-V PLOT

• Ideal Models $- b = 155(W/L) mA/V^2$ $- V_t = 0.4 V$ $- V_{DD} = 1.8 V$

• 180 nm TSMC process

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

$$V_{gs} = 1.8$$

 $V_{gs} = 1.5$
 $V_{gs} = 1.2$
 $V_{gs} = 0.9$
 $= 0.6$
 1.2 1.5 1.8 V_{ds}

SIMULATED NMOS I-V PLOT

- 180 nm TSMC process
- BSIM 3v3 SPICE models $I_{ds}(\mu A)$
- What differs?
 - ► Less ON current
 - ► No square law
 - ➤Current increases
 - \succ in saturation

		$V_{gs} = 1.8$
		V _{gs} = 1.5
		V _{gs} = 1.2
		V _{gs} = 0.9
		V _{gs} = 0.6
I	I	
0.9	1.2	1.5
V_{ds}		

ASSESSMENT

- 1.Compare Accumulation, Depletion, Inversion modes
- 2. Write the Ids equations for three modes in Shockley 1st order transistor models
- 3.Draw pMOS I-V plot

SUMMARY & THANK YOU

16/11/2023

MOS IV CHARACTERISTICS 19ECB302-VLSI DESIGN/J.Prabakaran/Assistant Professor/ECE/SNSCT

