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DESIGN HIERARCHIES

• Represent the hierarchy of a design

– modules

• the basic building blocks

– ports

• the I/O pins in hardware

• input, output or inout
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DESIGN HIERARCHIES

• The module is the basic building block in Verilog

– Modules can be interconnected to describe the
structure of your digital system

– Modules start with keyword module and end
with keyword endmodule

– Modules have ports for interconnection with
other modules

Module AND <port list>

•
•
•

endmodule

Module CPU <port list>

•
•
•

endmodule

• Module Ports

– Similar to pins on a chip

– Provide a way to communicate with outside world

– Ports can be input, output or inout

i0

i1

o

Module AND (i0, i1, o); 
input i0, i1;
output o;

endmodule
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DESIGN HIERARCHIES

• Can (should) specify module connections by name

– Helps keep the bugs away

– Example

mux2to1 mux1 (.A (A[1])

.B (B[1]),

.O (O[1]),

.S (Sel) );

– Verilog won’t complain about the order (but it is
still poor practice to mix them up):
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WIRE AND VECTOR ASSIGNMENT
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• Wire assignment: “continuous assignment”

– Connect combinational logic block or other wire 
to wire input

– Order of statements not important to Verilog, 
executed totally in parallel

– But order of statements can be important to 
clarity of thought!

– When right-hand-side changes, it immediately 
flows through to left

–Designated by the keyword assign 

wire c;

assign c = a | b;

wire c = a | b; // same thing



VECTORS OF WIRES

• Wire vectors:

wire [7:0] W1; // 8 bits, w1[7] is MSB

– Also called “buses”

• Operations

– Bit select: W1[3]

– Range select: W1[3:2]

– Concatenate:

vec = {x, y, z};

{carry, sum} = vec[0:1];

– e.g., swap high and low-order bytes of 16-bit vector

wire [15:0] w1, w2;

assign w2 = {w1[7:0], w1[15:8]}

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT



SIGNAL AND SIGNAL EDGE SENSITIVITY
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• Signal sensitivity: evaluate block on any signal 
change

always @(CLK)

• Edge sensitivity: evaluate block on particular signal 
change

always @(posedge CLK)



TWO ROLES OF HDL AND RELATED TOOLS
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• #1: Specifying digital logic

– Specify the logic that appears in final design

– Either

• Translated automatically (called synthesis) or

• Optimized manually (automatically checked for equivalence)

• #2: Simulating and testing a design

– High-speed simulation is crucial for large designs

– Many HDL interpreters optimized for speed

– Testbench: code to test design, but not part of final design



DESIGN HIERARCHIES

• Build up more complex modules using simpler 
modules

• Example: 4-bit wide mux from four 1-bit muxes

– Again, just “drawing” boxes and wires

module mux2to1_4(

input [3:0] A,

input [3:0] B,

input Sel,

output [3:0] O );

mux2to1 mux0 (Sel, A[0], B[0], O[0]);

mux2to1 mux1 (Sel, A[1], B[1], O[1]);

mux2to1 mux2 (Sel, A[2], B[2], O[2]);

mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

• Module instances

– Verilog models consist of a hierarchy of 
module instances

– In C++ speak: modules are classes and 
instances are objects

AND3

i0
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i1

i2
o

Module AND3 (i0, i1, i2, o); 
input i0, i1, i2;
output 0; 
wire temp;
AND a0 (.i0(i0), .i1(i1), .o(temp));
AND a1 (.i0(i2), .i1(temp), .o(0));

endmodule



DESIGN HIERARCHIES

 Top-Down Design Methodology

module CPA4b(Cout, Sum, a,b,Cin);

output Cout;
output [3:0] Sum;

//by position mapping

fa3(Cout, Sum[3], a[3], b[3], c[2]);

input [3:0]
Input

wire [2:0] 
adder 
adder

adder  

adder

endmodule
module adder (carry, sum, a, b, cin);
output carry, sum;
input a, b, cin;
assign {carry, sum} = a + b + cin;

endmodule

fa0(c[0], Sum[0], a[0], b[0], Cin);

fa1(.a(a[1]), .b(b[1]), .cin(c[0]), .carry(c[1]), .sum(Sum[1]));
fa2(c[2], Sum[2], a[2], b[2], c[1]);

a,b; Cin; c;

//by name mapping

1-bit 
adder

1-bit 
adder

1-bit 
adder

1-bit 
adder

4-bit 
adder
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SYNTHESIS VS SIMULATION
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• HDLs have features for both synthesis and simulation

– E.g., simulation-only operations for error messages, reading files

– Obviously, these can be simulated, but not synthesized into circuits

– Also has constructs such as for-loops, while-loops, etc.

• These are either un-synthesizable or (worse) synthesize poorly

– You need procedural code for testbench and only for testbench

• Trends: a moving target

– Good: better synthesis tools for higher-level constructs

– Bad: harder than ever to know what is synthesizable or not

• Important distinction: What is a “higher-level” construct and what is “procedural 
code”?



ACTIVITY

Ref.: https://puzzlersworld.com
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STRUCTURAL VS BEHAVIORAL HDL CONSTRUCTS
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• Structural constructs specify actual hardware structures

– Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

– Analogous to programming software in assembly

• Behavioral constructs specify an operation on bits

– High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Not all behavioral constructs are synthesizable

– We’ve already talked about the pitfal1l4s of trying to “program”

– But even some combinational logic won’t synthesize well

– out = a % b // modulo operation – what does this synthesize to?

– We will not use: + - * / % > >= < <= >> <<



VERILOG STRUCTURAL VS BEHAVIORAL EXAMPLE

output Out );

wire S_, AnS_, BnS;

not (S_, S); Y

and (AnS_, A, S_);

and (BnS, B, S);

or (Out, AnS_, BnS); 

endmodule

S

Out
B

A

input S, A, B, 
output Out );
assign Out = (~S & A) | (S & B); 

endmodule
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Behavioral

module mux2to1(

Structural

module mux2to1( 

input S, A, B,

Better:
assign Out = S? B:A;



THREE MODULE COMPONENTS
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• Interface specification – new style (Verilog 2001)

module mux2to1( 

input S, A, B, 

output O );

– Can also have inout: bidirectional wire (we will 
not need or use)

• Declarations

– Internal wires, i.e., wires that remain within this 
module

– Wires also known as “nets” or “signals”

wire S_, AnS_, BnS;

• Implementation: primitive and module 
instantiations

and (AnS_, A, S_);



THREE MODULE COMPONENTS-1
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• Structural: Logic is described in terms of Verilog 
gate primitives

• Example:

not n1(sel_n, sel);

and a1(sel_b, b, sel_b);

and a2(sel_a, a, sel);

or o1(out, sel_b, sel_a);
sel

b

a

out

sel_n

sel_a

n1
a1

sel_b

a2

o1



• Dataflow: Specify output signals in terms of input signals

• Example:

assign out = (sel & a) | (~sel & b);

sel

b

a

out

sel_b

sel_n

sel_a

THREE MODULE COMPONENTS-2
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THREE MODULE COMPONENTS-3
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• Behavioral: Algorithmically specify the behavior 
of the design

• Example:

if (select == 0) begin 

out = b;

end

else if (select == 1) begin

out = a;

end

a

b

sel

outBlack Box

2x1 MUX



input [3:0] A;

input [3:0] B; 

input Sel; 

output [3:0] O;
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Like in C, but use begin-end instead of {-} to group
module mux2to1_4(A, B, Sel, O);

mux2to1 mux0 (Sel, A[0], B[0], O[0]);

mux2to1 mux1 (Sel, A[1], B[1], O[1]);

mux2to1 mux2 (Sel, A[2], B[2], O[2]);

mux2to1 mux3 (Sel, A[3], B[3], O[3]); 

endmodule

BEHAVIORAL STATEMENTS

if (<expr>) <stmt> else if <stmt>

for (<stmt>;<expr>;<stmt>) <stmt>
Careful: No ++ operator in Verilog



BEHAVIOR INVOCATION: ALWAYS
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always @(<sensitivity><or sensitivity>*) 

begin

<stmt>*  

end

• Defines reaction of module to changes in input

– sensitivity list: signals or signal edges that trigger change

– Keyword or: disjunction of multiple sensitivity elements

– Multiple always sections are allowed

• Careful: don’t know order in which signals arrive

• Best to use one



THREE MODULE COMPONENTS
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Structural Modeling

• Execution: Concurrent

• Format (Primitive Gates):

and G2(Carry, A, B);

• First parameter (Carry) – Output

• Other Inputs (A, B) - Inputs

Dataflow Modeling

• Uses continuous assignment statement

– Format: assign [ delay ] net = expression;

– Example: assign sum = a ^ b;

• Delay: Time duration between assignment from RHS to 
LHS

• All continuous assignment statements execute 
concurrently

• Order of the statement does not impact the design



THREE MODULE COMPONENTS
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Dataflow Modeling

• Delay can be introduced

– Example: assign #2 sum = a ^ b;

– “#2” indicates 2 time-units

– No delay specified : 0 (default)

• Associate time-unit with physical time

– `timescale time-unit/time-precision

– Example: ̀ timescale 1ns/100 ps

• Timescale

`timescale 1ns/100ps

– 1 Time unit = 1 ns

– Time precision is 100ps (0.1 ns)

– 10.512ns is interpreted as 10.5ns

• Example:

`timescale 1ns/100ps

module HalfAdder (A, B, Sum, Carry); 

input A, B;

output Sum, Carry; 

assign #3 Sum = A ^ B; 

assign #6 Carry = A & B;

endmodule



THREE MODULE COMPONENTS
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• Example:

module mux_2x1(a, b, sel, 
out);

input a, a, sel; 

output out;

always @(a or b or sel)

begin

if (sel == 1) 

out = a;

else out = b; 

end

endmodule

Sensitivity List
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VERILOG MODULE EXAMPLE & RTL VS STRUCTURAL

module Full_Adder_Behavioral_Verilog(
input X1, X2, Cin,
output S, Cout
);
reg[1:0] temp; 
always @(*) 
begin
temp = {1'b0,X1} + {1'b0,X2}+{1'b0,Cin};
end
assign S = temp[0];
assign Cout = temp[1];

endmodule
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STRUCTURAL MODEL EXAMPLE

Module Full_Adder_Structural_Verilog ( input X1, X2, Cin, output S, Cout );
wire a1, a2, a3;
xor u1(a1,X1,X2);

and u2(a2,X1,X2);
and u3(a3,a1,Cin);
or u4(Cout,a2,a3);

xor u5(S,a1,Cin);
endmodule
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MIXED MODELING STYLE
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//mixed-design full adder
module full_adder_mixed (a, b, cin, sum, cout);
//list inputs and outputs
input a, b, cin; 
output sum, cout;
//define reg and wires
reg cout; 
wire a, b, cin; 
wire sum; 
wire net1;
//built-in primitive
xor (net1, a, b);
//behavioral
always @ (a or b or cin) 
begin

cout = cin & (a ^ b) | (a & b); 
end
//dataflow
assign sum = net1 ^ cin; endmodule



ASSESSMENT
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1.Quiz:what’s the difference?

always @(D or CLK) if (CLK) Q <= D; 

always @(posedge CLK) Q <= D;

2.Fill up the blanks

module mux_2x1(a, b, sel, out);

input a, b, sel;

output out;

always @(----------------------)

begin

if (sel == 1)

out = a;

else out = ------------;

end

endmodule

4.Write the Verilog HDL code for mixed 
modeling

3.List out the three modeling styles name



SUMMARY & THANK YOU
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