
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB302–VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 5-SPECIFICATION USING VERILOG HDL

TOPIC 9,10–DESIGN HIERARCHIES, BEHAVIORAL AND RTL MODELING

1

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

OUTLINE

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

 DESIGN HIERARCHIES
 WIRE AND VECTOR ASSIGNMENT
 VECTORS OF WIRES
 SIGNAL AND SIGNAL EDGE SENSITIVITY
 TWO ROLES OF HDL AND RELATED TOOLS
 SYNTHESIS VS SIMULATION
 ACTIVITY
 STRUCTURAL VS BEHAVIORAL HDL CONSTRUCTS
 THREE MODULE COMPONENTS-DATA

FLOW,BEHAVIOURAL(RTL),STRUCTURAL
 MIXED MODELING STYLE
 ASSESSMENT
 SUMMARY

DESIGN HIERARCHIES

• Represent the hierarchy of a design

– modules

• the basic building blocks

– ports

• the I/O pins in hardware

• input, output or inout

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

DESIGN HIERARCHIES

• The module is the basic building block in Verilog

– Modules can be interconnected to describe the
structure of your digital system

– Modules start with keyword module and end
with keyword endmodule

– Modules have ports for interconnection with
other modules

Module AND <port list>

•
•
•

endmodule

Module CPU <port list>

•
•
•

endmodule

• Module Ports

– Similar to pins on a chip

– Provide a way to communicate with outside world

– Ports can be input, output or inout

i0

i1

o

Module AND (i0, i1, o);
input i0, i1;
output o;

endmodule

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

DESIGN HIERARCHIES

• Can (should) specify module connections by name

– Helps keep the bugs away

– Example

mux2to1 mux1 (.A (A[1])

.B (B[1]),

.O (O[1]),

.S (Sel));

– Verilog won’t complain about the order (but it is
still poor practice to mix them up):

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

WIRE AND VECTOR ASSIGNMENT

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

• Wire assignment: “continuous assignment”

– Connect combinational logic block or other wire
to wire input

– Order of statements not important to Verilog,
executed totally in parallel

– But order of statements can be important to
clarity of thought!

– When right-hand-side changes, it immediately
flows through to left

–Designated by the keyword assign

wire c;

assign c = a | b;

wire c = a | b; // same thing

VECTORS OF WIRES

• Wire vectors:

wire [7:0] W1; // 8 bits, w1[7] is MSB

– Also called “buses”

• Operations

– Bit select: W1[3]

– Range select: W1[3:2]

– Concatenate:

vec = {x, y, z};

{carry, sum} = vec[0:1];

– e.g., swap high and low-order bytes of 16-bit vector

wire [15:0] w1, w2;

assign w2 = {w1[7:0], w1[15:8]}

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

SIGNAL AND SIGNAL EDGE SENSITIVITY

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

• Signal sensitivity: evaluate block on any signal
change

always @(CLK)

• Edge sensitivity: evaluate block on particular signal
change

always @(posedge CLK)

TWO ROLES OF HDL AND RELATED TOOLS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

• #1: Specifying digital logic

– Specify the logic that appears in final design

– Either

• Translated automatically (called synthesis) or

• Optimized manually (automatically checked for equivalence)

• #2: Simulating and testing a design

– High-speed simulation is crucial for large designs

– Many HDL interpreters optimized for speed

– Testbench: code to test design, but not part of final design

DESIGN HIERARCHIES

• Build up more complex modules using simpler
modules

• Example: 4-bit wide mux from four 1-bit muxes

– Again, just “drawing” boxes and wires

module mux2to1_4(

input [3:0] A,

input [3:0] B,

input Sel,

output [3:0] O);

mux2to1 mux0 (Sel, A[0], B[0], O[0]);

mux2to1 mux1 (Sel, A[1], B[1], O[1]);

mux2to1 mux2 (Sel, A[2], B[2], O[2]);

mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

• Module instances

– Verilog models consist of a hierarchy of
module instances

– In C++ speak: modules are classes and
instances are objects

AND3

i0

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

i1

i2
o

Module AND3 (i0, i1, i2, o);
input i0, i1, i2;
output 0;
wire temp;
AND a0 (.i0(i0), .i1(i1), .o(temp));
AND a1 (.i0(i2), .i1(temp), .o(0));

endmodule

DESIGN HIERARCHIES

 Top-Down Design Methodology

module CPA4b(Cout, Sum, a,b,Cin);

output Cout;
output [3:0] Sum;

//by position mapping

fa3(Cout, Sum[3], a[3], b[3], c[2]);

input [3:0]
Input

wire [2:0]
adder
adder

adder

adder

endmodule
module adder (carry, sum, a, b, cin);
output carry, sum;
input a, b, cin;
assign {carry, sum} = a + b + cin;

endmodule

fa0(c[0], Sum[0], a[0], b[0], Cin);

fa1(.a(a[1]), .b(b[1]), .cin(c[0]), .carry(c[1]), .sum(Sum[1]));
fa2(c[2], Sum[2], a[2], b[2], c[1]);

a,b; Cin; c;

//by name mapping

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

4-bit
adder

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

SYNTHESIS VS SIMULATION

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

• HDLs have features for both synthesis and simulation

– E.g., simulation-only operations for error messages, reading files

– Obviously, these can be simulated, but not synthesized into circuits

– Also has constructs such as for-loops, while-loops, etc.

• These are either un-synthesizable or (worse) synthesize poorly

– You need procedural code for testbench and only for testbench

• Trends: a moving target

– Good: better synthesis tools for higher-level constructs

– Bad: harder than ever to know what is synthesizable or not

• Important distinction: What is a “higher-level” construct and what is “procedural
code”?

ACTIVITY

Ref.: https://puzzlersworld.com

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

STRUCTURAL VS BEHAVIORAL HDL CONSTRUCTS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
14/29

• Structural constructs specify actual hardware structures

– Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

– Analogous to programming software in assembly

• Behavioral constructs specify an operation on bits

– High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Not all behavioral constructs are synthesizable

– We’ve already talked about the pitfal1l4s of trying to “program”

– But even some combinational logic won’t synthesize well

– out = a % b // modulo operation – what does this synthesize to?

– We will not use: + - * / % > >= < <= >> <<

VERILOG STRUCTURAL VS BEHAVIORAL EXAMPLE

output Out);

wire S_, AnS_, BnS;

not (S_, S); Y

and (AnS_, A, S_);

and (BnS, B, S);

or (Out, AnS_, BnS);

endmodule

S

Out
B

A

input S, A, B,
output Out);
assign Out = (~S & A) | (S & B);

endmodule

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
15/29

Behavioral

module mux2to1(

Structural

module mux2to1(

input S, A, B,

Better:
assign Out = S? B:A;

THREE MODULE COMPONENTS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
16/29

• Interface specification – new style (Verilog 2001)

module mux2to1(

input S, A, B,

output O);

– Can also have inout: bidirectional wire (we will
not need or use)

• Declarations

– Internal wires, i.e., wires that remain within this
module

– Wires also known as “nets” or “signals”

wire S_, AnS_, BnS;

• Implementation: primitive and module
instantiations

and (AnS_, A, S_);

THREE MODULE COMPONENTS-1

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
17/29

• Structural: Logic is described in terms of Verilog
gate primitives

• Example:

not n1(sel_n, sel);

and a1(sel_b, b, sel_b);

and a2(sel_a, a, sel);

or o1(out, sel_b, sel_a);
sel

b

a

out

sel_n

sel_a

n1
a1

sel_b

a2

o1

• Dataflow: Specify output signals in terms of input signals

• Example:

assign out = (sel & a) | (~sel & b);

sel

b

a

out

sel_b

sel_n

sel_a

THREE MODULE COMPONENTS-2

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
18/29

THREE MODULE COMPONENTS-3

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
19/29

• Behavioral: Algorithmically specify the behavior
of the design

• Example:

if (select == 0) begin

out = b;

end

else if (select == 1) begin

out = a;

end

a

b

sel

outBlack Box

2x1 MUX

input [3:0] A;

input [3:0] B;

input Sel;

output [3:0] O;

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
20/29

Like in C, but use begin-end instead of {-} to group
module mux2to1_4(A, B, Sel, O);

mux2to1 mux0 (Sel, A[0], B[0], O[0]);

mux2to1 mux1 (Sel, A[1], B[1], O[1]);

mux2to1 mux2 (Sel, A[2], B[2], O[2]);

mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

BEHAVIORAL STATEMENTS

if (<expr>) <stmt> else if <stmt>

for (<stmt>;<expr>;<stmt>) <stmt>
Careful: No ++ operator in Verilog

BEHAVIOR INVOCATION: ALWAYS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
21/29

always @(<sensitivity><or sensitivity>*)

begin

<stmt>*

end

• Defines reaction of module to changes in input

– sensitivity list: signals or signal edges that trigger change

– Keyword or: disjunction of multiple sensitivity elements

– Multiple always sections are allowed

• Careful: don’t know order in which signals arrive

• Best to use one

THREE MODULE COMPONENTS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
22/29

Structural Modeling

• Execution: Concurrent

• Format (Primitive Gates):

and G2(Carry, A, B);

• First parameter (Carry) – Output

• Other Inputs (A, B) - Inputs

Dataflow Modeling

• Uses continuous assignment statement

– Format: assign [delay] net = expression;

– Example: assign sum = a ^ b;

• Delay: Time duration between assignment from RHS to
LHS

• All continuous assignment statements execute
concurrently

• Order of the statement does not impact the design

THREE MODULE COMPONENTS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
23/29

Dataflow Modeling

• Delay can be introduced

– Example: assign #2 sum = a ^ b;

– “#2” indicates 2 time-units

– No delay specified : 0 (default)

• Associate time-unit with physical time

– `timescale time-unit/time-precision

– Example: ̀ timescale 1ns/100 ps

• Timescale

`timescale 1ns/100ps

– 1 Time unit = 1 ns

– Time precision is 100ps (0.1 ns)

– 10.512ns is interpreted as 10.5ns

• Example:

`timescale 1ns/100ps

module HalfAdder (A, B, Sum, Carry);

input A, B;

output Sum, Carry;

assign #3 Sum = A ^ B;

assign #6 Carry = A & B;

endmodule

THREE MODULE COMPONENTS

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT
24/29

• Example:

module mux_2x1(a, b, sel,
out);

input a, a, sel;

output out;

always @(a or b or sel)

begin

if (sel == 1)

out = a;

else out = b;

end

endmodule

Sensitivity List

2510/11/2020

23/06/2020 DESIGN HIERARCHIES & MODELING STYLES/16EC303-VLSI DESIGN/Dr.B.Sivasankari/Professor/ECE/SNSCT

VERILOG MODULE EXAMPLE & RTL VS STRUCTURAL

module Full_Adder_Behavioral_Verilog(
input X1, X2, Cin,
output S, Cout
);
reg[1:0] temp;
always @(*)
begin
temp = {1'b0,X1} + {1'b0,X2}+{1'b0,Cin};
end
assign S = temp[0];
assign Cout = temp[1];

endmodule

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

2610/11/2020

23/06/2020 DESIGN HIERARCHIES & MODELING STYLES/16EC303-VLSI DESIGN/Dr.B.Sivasankari/Professor/ECE/SNSCT

STRUCTURAL MODEL EXAMPLE

Module Full_Adder_Structural_Verilog (input X1, X2, Cin, output S, Cout);
wire a1, a2, a3;
xor u1(a1,X1,X2);

and u2(a2,X1,X2);
and u3(a3,a1,Cin);
or u4(Cout,a2,a3);

xor u5(S,a1,Cin);
endmodule

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

MIXED MODELING STYLE

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

//mixed-design full adder
module full_adder_mixed (a, b, cin, sum, cout);
//list inputs and outputs
input a, b, cin;
output sum, cout;
//define reg and wires
reg cout;
wire a, b, cin;
wire sum;
wire net1;
//built-in primitive
xor (net1, a, b);
//behavioral
always @ (a or b or cin)
begin

cout = cin & (a ^ b) | (a & b);
end
//dataflow
assign sum = net1 ^ cin; endmodule

ASSESSMENT

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

1.Quiz:what’s the difference?

always @(D or CLK) if (CLK) Q <= D;

always @(posedge CLK) Q <= D;

2.Fill up the blanks

module mux_2x1(a, b, sel, out);

input a, b, sel;

output out;

always @(----------------------)

begin

if (sel == 1)

out = a;

else out = ------------;

end

endmodule

4.Write the Verilog HDL code for mixed
modeling

3.List out the three modeling styles name

SUMMARY & THANK YOU

DESIGN HIERARCHIES & MODELING STYLES/19ECB302-VLSI DESIGN/M.Pradeepa/AP/ECE/SNSCT

