Moment and couple

In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous.

$$
\begin{aligned}
& \left|\vec{M}_{o}=\vec{r} \times \vec{F} \quad \vec{M}_{o}=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|\right. \\
& \vec{M}_{o}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{i}+\left(r_{z} F_{x}-r_{x} F_{z}\right) \hat{j}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \hat{k}
\end{aligned}
$$

$$
M_{x}=-F_{y} r_{z}+F_{z} r_{y}
$$

$$
M_{y}=F_{x} r_{z}-F_{z} r_{x}
$$

$$
+\varphi_{\mid}^{z}
$$

$$
M_{z}=-F_{x} r_{y}+F_{y} r_{x}
$$

Moment about an arbitrary axis

Varignon's Theorem

$$
\begin{aligned}
& \vec{M}_{o}=\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2}+\vec{r} \times \vec{F}_{3}+\ldots \\
& =\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots\right) \\
& \\
& =\vec{r} \times\left(\sum \vec{F}\right)
\end{aligned}
$$

$$
\vec{M}_{o}=\sum(\vec{r} \times \vec{F})=\vec{r} \times \vec{R}
$$

Couples(1)

-Couple is a moment produced by two force of equal magnitude but opposite in direction.

$$
\begin{aligned}
& \vec{M}=\vec{r}_{A} \times \vec{F}+\vec{r}_{B} \times(-\vec{F})=\left(\vec{r}_{A}-\vec{r}_{B}\right) \times \vec{F} \\
& \vec{M}=\vec{r} \times \vec{F}
\end{aligned}
$$

- $\vec{r}=$ vector from any point on the line of action of $-\vec{F}$ to any point on the line of action of \vec{F}
- Moment of a couple is the same about all point \rightarrow Couple may be represented as a free vector.
- Direction: normal to the plane of the two forces (right hand rule)
- Recall: Moment of force about a point is a sliding vector.

Couples(2)

[Couple from $\left.F_{1}\right]+\left[\right.$ Couple from $\left.F_{2}\right]=\left[\right.$ Couple from $\left.F_{1}+F_{2}\right]$
couples are free vector. the line of action or point of action are not needed!!!

Force - couple systems

- $\vec{M}=\vec{r} \times \vec{F}=$ Moment of \vec{F} about point B
- \vec{r} is a vector start from point B to any point on the line of action of \vec{F}

Sample 1

A Tension \mathbf{T} of magnitude 10 kN is applied to the cable attached to the top A of the rigid mast and secured to the ground at B.
Determine the moment M_{z} of T about the z-axis passing through the base O.

Sample 2

Determine the magnitude and direction of the couple \mathbf{M} which will replace the two given couples and still produce the same external effect on the block. Specify the two force \mathbf{F} and $-\mathbf{F}$, applied in the two faces of the block parallel to the y-z plane, which may replace the four given forces. The $30-\mathrm{N}$ forces act parallel to the $y-z$ plane.

Sample 3

A force of 400 N is applied at A to the handle of the control lever which is attached to the fixed shaft $O B$. In determining the effect of the force on the shaft at a cross section such as that at O, we may replace the force by an equivalent force at O and a couple. Describe this couple as a vector \mathbf{M}.

Sample 4

If the magnitude of the moment of \mathbf{F} about line $C D$ is 50 Nm , determine the magnitude of \mathbf{F}.

Sample 5

Tension in cable AB is 143.4 N. Determine the moment about the x -axis of this tension force acting on point A. Compare your result to the moment of the weight W of the $15-\mathrm{kg}$ uniform plate about the x -axis. What is the moment of the tension force acting at A about line OB

Summary (Force-Moment 3-D)

Force

1. Determine coordinate
2. Determine unit vector
3. Force can be calculate

Angle between force and x -, y -,z-axis

1. Force $=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}$
2. Determine amplitude of force F
3. $\cos \theta_{x}=F_{x} / F, \cos \theta_{y}=F_{y} / F, \cos \theta_{z}=F_{z} / F$

Angle between force and arbitrary axis

1. Determine unit vectors ($\mathbf{n}_{F}, \mathbf{n}$)
2. $\cos \theta=\mathbf{n}_{\boldsymbol{F}} \cdot \mathbf{n}$

Summary (Force-Moment 3-D)

Moment \neg Consider to use vector method or scalar method

Vector method

Moment about an arbitrary point O

1. Determine \mathbf{r} and \mathbf{F}
2. Cross vector

Moment about an arbitrary axis

1. Determine moment about any point on the axis $\mathbf{M}_{\boldsymbol{O}}$
2. Determine unit vector of the axis \mathbf{n}
3. Moment about the axis $=\mathbf{M}_{\boldsymbol{O}} \cdot \mathbf{n}$

Angle between moment and axis
Same as angle between force and axis

Resultants(1)

Select a point to find moment

Step2
Replace forces with forces at point $O+$ couples

Step3

Add forces and couples vectorially to get the resultant force and moment

$$
\begin{aligned}
& \vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots=\sum \vec{F} \\
& \vec{M}=\vec{M}_{1}+\vec{M}_{2}+\vec{M}_{3}+\ldots=\sum(\vec{r} \times \vec{F})
\end{aligned}
$$

Resultants(2)

```
2-D
```


$\vec{M} \perp \vec{F} \quad \square$
Force + couple can be replaced by a force \mathbf{F} by changing the position of \mathbf{F}.

$\vec{M}_{2} \perp \vec{R}$
\mathbf{M}_{2} and \mathbf{R} can be replaced by one force \mathbf{R} by changing the position of \mathbf{R}.
$\vec{M}_{1} / / \vec{R}$
\mathbf{M}_{1} can not be replaced

Wrench resultant(1)

Wrench resultant(2)

2-D: All force systems can be represented with only one resultant force or couple

3-D: All force systems can be represented with a wrench resultant

Wrench: resultant couple \vec{M} parallel to the resultant force \vec{R}

Positive wrench

Negative wrench

Sample 6

Determine the resultant of the system of parallel forces which act on the plate. Solve with a vector approach.

Sample 7

Replace the two forces and the negative wrench by a single force R applied at A and the corresponding couple M.

Sample 8

Determine the wrench resultant of the three forces acting on the bracket. Calculate the coordinates of the point P in the $x-y$ plane through which the resultant force of the wrench acts. Also find the magnitude of the couple \mathbf{M} of the wrench.

Sample 9

The resultant of the two forces and couple may be represented by a wrench. Determine the vector expression for the moment \mathbf{M} of the wrench and find the coordinates of the point P in the x-z plane through which the resultant force of the wrench passes

