Introduction to Mechanics

Units of Quantities (SI Unit)

Quantity	Unit	Symbol	Formula
Acceleration	Metre $/(\text{Second})^2$	-	m/s ²
Angle	Radian	rad	Rad
Angular Acceleration	radian/(Second) ²	-	Rad/s ²
Angular Velocity	Radian/second	-	Rad/s
Area	Square meter	-	m^2
Density	Kilogram/(meter) ³	-	Kg/m ³
Energy	Joule	J	Nm
Force	Newton	N	Kg m/s ²
Frequency	Hertz	Hz	(l/s)
Length	Meter	М	М
Mars	Kilogram	Kg	Kg
Moment of force	Newton-metre	-	Nm
Power	Watt	W	J/s
Prevue	Pascal	Ра	N/m ²
Stress	Pascal	Ра	N/m^2
Time	Second	S	S
Velocity	Metre/second	-	m/s

Introduction

Engg. Mechanics is a branch of science which deals with the behavior of a body when the body is at rest or motion.

without considering the forces that causes motion)

(Study of a body in motion considering the forces that causes motion)

Terms used in Engineering Mechanics

Vector quantity: A quantity which is completely specified by magnitude and direction is known as vector quantity. (Eg.) Velocity, Acceleration, Force & Momentum.

Scalar quantity: A quantity which is completely specified only by magnitude is known as scalar quantity. (Eg) Mass, Time, Length etc.

Particle: A particle is a body of negligible dimensions and the mass of the particle is considered to be concentrated at a point.

Rigid body: A body which dos not deform under the action of applied force.

Mass: The quantity of matter contained in a body is called as mass.

Weight: The force with which a body is attracted towards the centre of the earth.

W = mg

Unit of measurement: A physical quantity can be measured by comparing the sample with a known standard amount. The known amount used as a reference in the measurement of physical quantities called unit.

Types of units

- 1. Basic units
- 2. Derived units

Basic unit: Used in the measurement of basic (or) fundamental quantities (ie) mass, length, time.

Derived unit: Used in the measurement of the physical quantities other than fundamental quantities. (E.g) Area, Volume, Energy.

System of Units

- 1. FPS (Foot Pound System)
- 2. CGS (cm, gram, sec)
- 3. MKS (m, kg, sec)
- 4. SI (International System of units)

Laws of Mechanics

Newton's first law of motion: A body remains in its state of rest or motion unless a a external force acting on it.

Newton's second law of motion: The accelaration of a particle is proportional to the resultant force acting on it and is in the direction of the force applied.

F = ma

Newton's Third law of motion: To every action there exists an equal and opposite reaction.