Gravitation law of attraction

States that any two bodies in the universe attract each other with a force that is directly forces proportional to the product of their masses and inversely proportional to the square of the distance between them.

G - Universal Gravitational constant

 $G = 6.673 \text{ x } 10^{-11} \text{ Nm}^2/\text{kg}^2$

G value – Henry Cavendish – After Newton's death

Earth's standard acceleration due to gravity $g = 9.80665 \text{ m/s}^2 (32.1740 \text{ ft/s}^2)$

An object falling near the earth's surface increases its velocity by 9.80655 m/s for each second of its descent.

Parallelogram law of forces

When two forces acting simultaneously at a point, can be expressed in both magnitude and direction by the two close sides of parallelogram drawn on a point, resultant is expressed completely, both in direction and magnitude by the diagonal of the parallelogram going through the point.

Sine law:

 α - Angle b/w two forces

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma^2}$$

Corrine Law: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $b^2 = a^2 + c^2 - 2ac \cos\beta$ $c^2 = a^2 + b^2 - 2ab \cos \gamma$

Direction of Resultant

Magnitude of Resultant (R)

 $LDAC = LDOB = \alpha, AC = Q$

In triangle ACD

 $AD = AC \cos \alpha = Q \cos \alpha$ $CD = AC Sin \alpha = Q sin \alpha$

In triangle OCD $OC^2 = OD^2 + OC^2$ OC = R, OD = OA + AD $= P + Q \cos \alpha$

$$\therefore OC^{2} = OD^{2} + OC^{2}$$

$$R^{2} = (OA + AD)^{2} + DC^{2}$$

$$= OA^{2} + AD^{2} + 2OA.AD + DC^{2}$$

$$R^{2} = P^{2} + Q^{2} \cos^{2} \alpha + 2 PQ \cos \alpha + Q^{2} \sin^{2} \alpha$$

$$R = \sqrt{P^{2} + Q^{2} + 2PQ \cos \alpha} \qquad (\therefore \sin^{2} \alpha + \cos^{2} \alpha = 1)$$

Case 1: If two forces P and Q acts at right angles, then

2

 $\alpha = 90^{\circ}$

We know, magnitude of resultant.

$$\mathbf{R} = \sqrt{P^2 + Q^2 + 2PQ\cos\alpha} = \sqrt{P^2 + Q^2 + 2PQ\cos90^\circ}$$
$$\mathbf{R} = \sqrt{P^2 + Q^2} \qquad [\therefore \cos 90 = 0]$$

We know, direction of resultant

$$\theta = \tan^{-1} \left(\frac{Q \sin \alpha}{P + Q \cos \alpha} \right) = \tan^{-1} \left(\frac{Q \sin 90^{\circ 1}}{P + Q \cos 90^{\circ}0} \right)$$
$$\theta = \tan^{-1} \left(\frac{Q}{P} \right)$$

Case 2: The two forces P & Q are equal and are acting at an angle α between them. (P = Q).

$$R = \sqrt{P^{2} + Q^{2} + 2PQ \cos \alpha}$$

$$= \sqrt{P^{2} + P^{2} + 2P^{2} \cos \alpha}$$

$$= \sqrt{2P^{2} (1 + \cos \alpha)} \qquad \left(\therefore 1 + \cos \alpha = 2 \cos^{2} \frac{\alpha}{2} \right)$$

$$= \sqrt{2P^{2} 2 \cos^{2} \frac{\alpha}{2}} = \sqrt{4P^{2} \cos^{2} \frac{\alpha}{2}}$$

$$R = 2P \cos \frac{\alpha}{2}$$

$$Q = \frac{\alpha}{2}$$

Problem 1: The resultant of the two forces, when they act at an angle of 60° is 14N. If the same forces are acting at right angles, their resultant is $\sqrt{136}N$. Determine the magnitude of the two forces.

Soln.:

Case 1Case 2
$$R_1 = 14N$$
 $R_2 = \sqrt{136} N$

$$\alpha_1 = 60^{\circ}$$
 $\alpha_2 = 90^{\circ}$

For case 1

$$R = \sqrt{P^{2} + Q^{2} + 2PQ \cos \alpha}, 14 = \sqrt{P^{2} + Q^{2} + 2PQ \cos^{2} 60^{\circ} 1/2}$$

$$14 = \sqrt{P^{2} + Q^{2} + PQ}$$

$$196 = P^{2} + Q^{2} + PQ \rightarrow (1)$$

For case 2

R	=	$\sqrt{P^2}$ +	$\overline{Q^2}$ or	· √136	$=\sqrt{P^2}$	$^{2}+Q^{2}$		
136	=	$P^2 + Q$	\mathbf{p}^2		→ (2)			
(1) – ((2)	=>	196-1	36	=	$P^2 + Q$	Qx + PQ	$-P^2-Q^2$
			60		=	PQ	→ (3)	
	(3) x 2	2=>	120		=	2 PQ	\rightarrow (4)	
	(4) + ((2)=>	136 +	120	=	$P^2 + Q$	$Q^2 + 2P$	Q
				256	=	$P^2 + Q$	$Q^2 + 2P$	Q
				$(16)^2$	=	(P&Q	$)^{2}$	
				P+Q	=	16		
				Р	=	16 - Ç	2	\rightarrow (5)

Substitute (5) in (3)

60 = (16-Q) Q $60 = 16Q - Q^{2}$ $Q^{2} - 16Q + 60 = 0$

This is a quadratic equation, so

Q =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 a = 1
b = -16
c = 60

$$= \frac{16 \pm \sqrt{256 - 240}}{2}$$
$$= \frac{16 \pm \sqrt{16}}{2} = \frac{16 \pm 4}{2} \therefore Q = 10\&6$$
$$= \frac{16 \pm \sqrt{16}}{2} = \frac{16 \pm 4}{2} \quad \therefore Q = 10 - 6$$

If Q = 10, P = 6

$$Q = 6, P = 10$$

Two forces are 10 N & 6 N