
Gravitation law of attraction 

 States that any two bodies in the universe attract each other with a force that is 

directly forces proportional to the product of their masses and inversely proportional to 

the square of the distance between them. 
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    G – Universal Gravitational constant 

    G =6.673 x 10
-11

 Nm
2
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G value – Henry Cavendish – After Newton’s death  

Earth’s standard acceleration due to gravity g = 9.80665 m/s
2 
(32.1740 ft/s

2
) 

An object falling near the earth’s surface increases its velocity by 9.80655 m/s for each 

second of its descent. 

Parallelogram law of forces 

 When two forces acting simultaneously at a point, can be expressed in both 

magnitude and direction by the two close sides of parallelogram drawn on a point, 

resultant is expressed completely, both in direction and magnitude by the diagonal of the 

parallelogram going through the point. 

  

 

 

 

 

Sine law:   α  - Angle b/w two forces 

     - Angle of resultant with x-axis 
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Corrine Law: Direction of Resultant 
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Magnitude of Resultant (R) 

DAC = DOB = α, AC = Q 

In triangle ACD In triangle OCD 

AD = AC cos α = Q cos α 

CD = AC Sin α = Q sin α 
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OC = R, OD = OA + AD 
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 R = cos222 PQQP    ( sin
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2
 α = 1) 

Case 1: If two forces P and Q acts at right angles, then 

         

 We know, magnitude of resultant. 
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  R =  90cos2cos2 2222 PQQPPQQP   

  R = 22 QP     [ cos 90 = 0] 

 We know, direction of resultant 
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Case 2: The two forces P & Q are equal and are acting at an angle α between them. (P = 

Q). 
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Problem 1: The resultant of the two forces, when they act at an angle of     is 14N. If 

the same forces are acting at right angles, their resultant is N136 . Determine the 

magnitude of the two forces. 

Soln.: 

Case 1 Case 2 

R1 = 14N R2 = N136  



α1 =     α2 =     

For case 1  

R = √                1  √                   

14 = PQQP  22  

196 = P
2
 + Q

2
 + PQ   (1) 

For case 2 

R = 2222 136 QPorQP   

136 = P
2
 + Q

2
   (2) 

(1) – (2) => 196-136 =  222 QPPQQxP   

   60  =  PQ  (3) 

 (3) x 2 => 120  =  2 PQ  (4) 
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2
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    P+Q = 16 

    P = 16 – Q   (5) 

Substitute (5) in (3) 

 60 = (16-Q) Q 

 60 = 16Q – Q
2
 

 Q
2
 – 16Q + 60 = 0 

This is a quadratic equation, so 
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If  Q = 10, P = 6 

 Q = 6, P = 10 

Two forces are 10 N & 6 N 

 


