

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+ +' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

16EC303-VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 5-SPECIFICATION USING VERILOG HDL

TOPIC 3,4 – GATE PRIMITIVES, GATE DELAYS

GATE PRIMITIVES & GATE DELAY /19ECB302-VLSI DESIGN/M.Pradeepa /AP/ECE/SNSCT

10/30/2023

OUTLINE

- INTRODUCTION
- VERILOG GATE DELAYS
- DESCRIPTION OF CIRCUIT WITH DELAY
- DATAFLOW MODELING
- MODULE CIRCUIT_WITH_DELAY & HALF ADDER- WAVE FORM COFIGURATIONS
- BEHAVIORAL MODELING DELAYS
- ACTIVITY
- DESCRIPTION STYLES
- DELAY SPECIFICATION IN PRIMITIVES
- DELAY AND TIME SCALES
- USER DEFINED PRIMITIVES-DEFINITIONS & SYMBOLS
- ASSESSMENT
- SUMMARY

VERILOG STRUCTURAL PRIMITIVES

- Gate-level ullet
 - One-output boolean operators: and, or, xor, nand, nor, xnor
 - E.g., C = A+B
 - or (C, A, B);
 - E.g., C= A+B+D

or (C, A, B, D);

- One-input operators: not
 - E.g., A = not Z

not (A, Z);

- E.g., A = not Z, B = not Z **not (A, B, Z);**
- Buf is like not but just replicates signals we don't need
- Transistor-level primitives too
 - We will not use

DESCRIPTION OF CIRCUIT WITH DELAY

module circuit_with_delay (A,B,C,x,y); **input** A,B,C; output x,y; wire e; **and** #(30) g1(e,A,B); **or** #(20) g3(x,e,y); **not** #(10) g2(y,C); endmodule

Delay: Time duration between assignment from RHS to LHS

All continuous assignment statements execute concurrently

Order of the statement does not impact the design

GATE PRIMITIVES & GATE DELAY /19ECB302-VLSI DESIGN/M.Pradeepa /AP/ECE/SNSCT

DATAFLOW MODELING

Delay can be introduced Example: assign #2 sum = a ^ b; "#2" indicates 2 time-units No delay specified : 0 (default)

Associate time-unit with physical time **`timescale** time-unit/time-precision Example: *timescale* 1ns/100 ps

Timescale

`timescale 1ns/100ps 1 Time unit = 1 ns Time precision is 100ps (0.1 ns) 10.512ns is interpreted as 10.5ns

- To specify the amount of delay from the input to the output of gates.
- The delay is specified in terms of time units and the symbol #.
- The association of a time unit with physical time is made using *timescale* compiler directive.
- Compiler directive starts with the "backquote (`)" symbol.

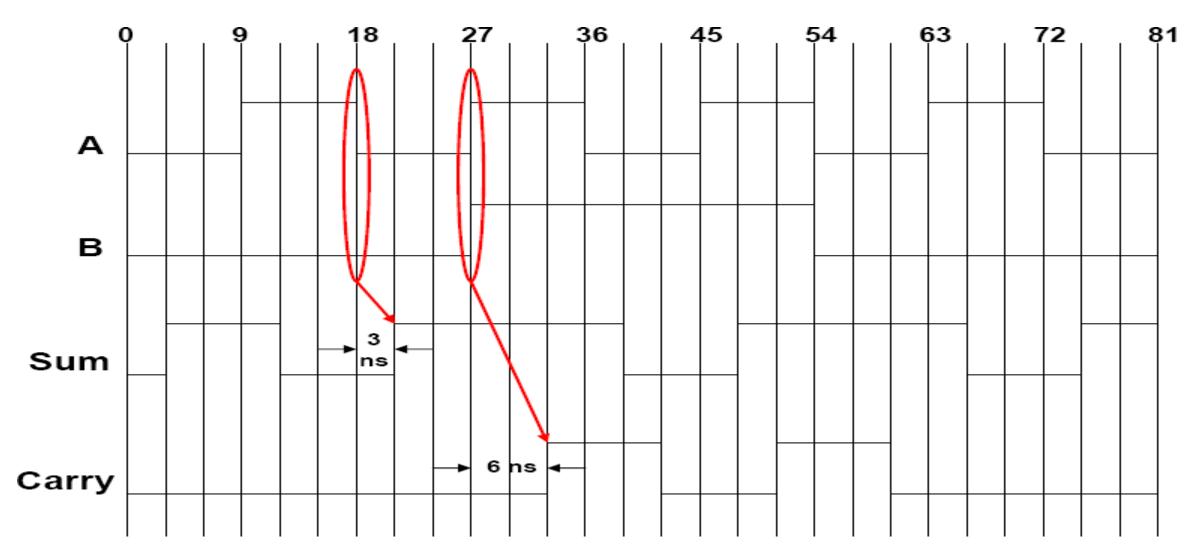
- **`timescale** 1ns/100ps The first number specifies the *unit of measurement* for time delays.
- The second number specifies the *precision* for which the delays are rounded off, in this case to 0.1ns.

MODULE CIRCUIT_WITH_DELAY & HALF ADDER

module circuit_with_delay

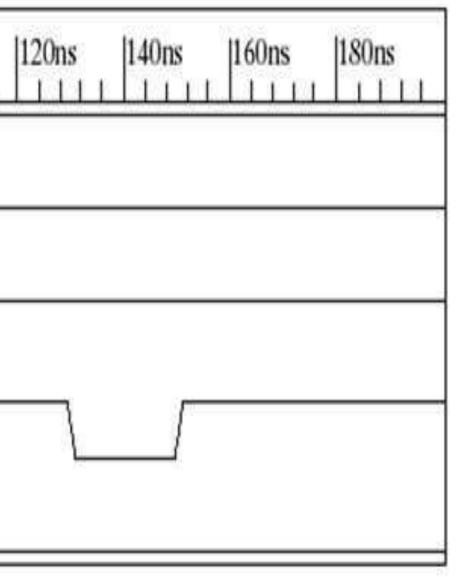
(A,B,C,x,y); input A,B,C; output x,y; wire e; and #(30) g1(e,A,B); or #(20) g3(x,e,y); not #(10) g2(y,C); endmodule

`timescale 1ns/100ps input A, B; output Sum, Carry; assign #3 Sum = A ^ B; assign #6 Carry = A & B; endmodule


10/30/202

- **module** HalfAdder (A, B, Sum, Carry);

WAVE FORM COFIGURATION HALF ADDER



WAVE FORM COFIGURATION MODULE WITH DELAY

	0ns	20ns	40ns	60ns	80ns	100ns
stimcrct.A						
stimcrct.B	1					
stimcrct.C	1					
stimcrct.x						
stimcrct.y						

In the above example, cwd is declared as one instance circuit_with_delay. (similar in concept to object<->class relationship)

BEHAVIORAL MODELING

Statements with a Sequential Block: Procedural Assignments Delay in Procedural Assignments **Inter-Statement Delay Intra-Statement Delay**

- Inter-Assignment Delay ullet
 - Example: —

Sum = $A \wedge B$;

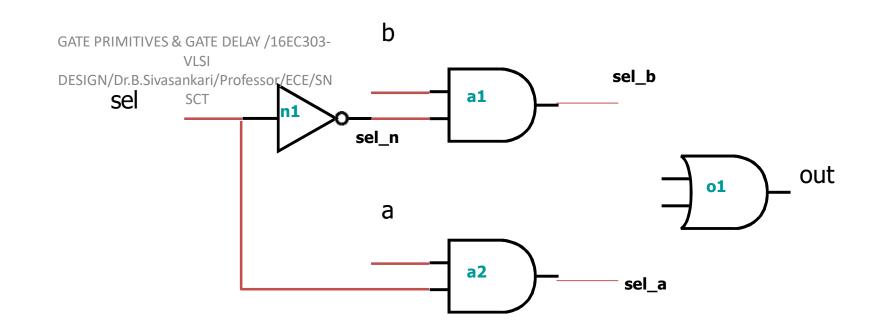
#2 Carry = A & B;

- **Delayed** execution
- Intra-Assignment Delay ullet
 - Example: ____
 - Sum = $A \wedge B$;

Carry = #2 A & B;

– Delayed assignment

ACTIVITY

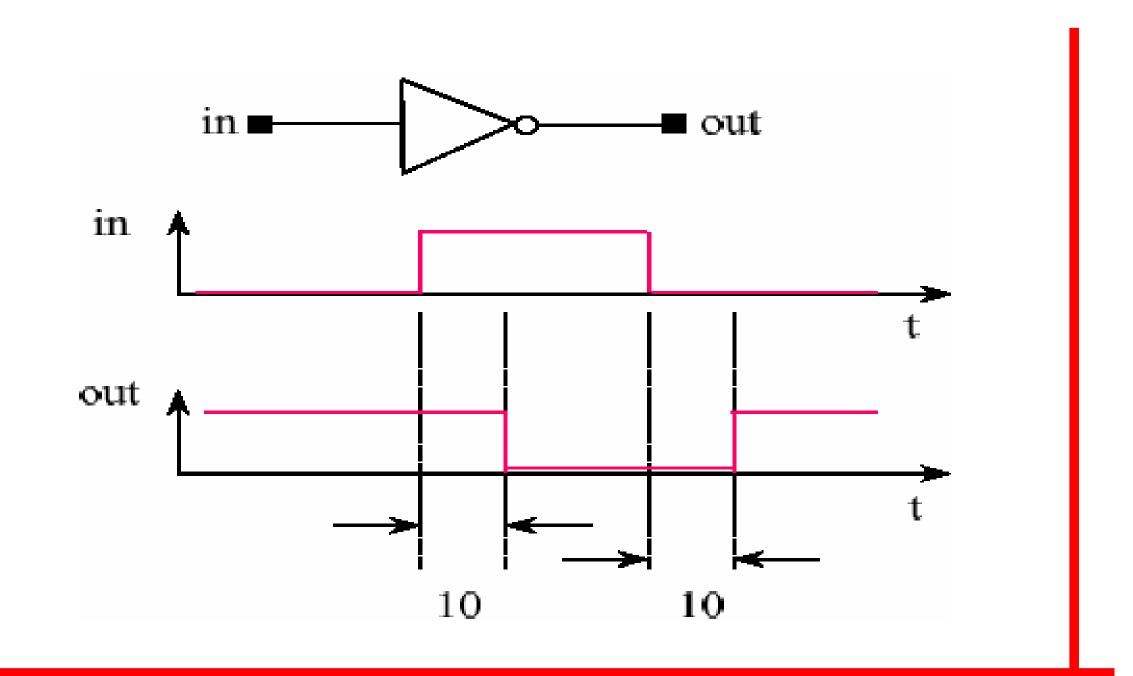

DEBATE

DESCRIPTION STYLES

- **Structural**: Logic is described in terms of Verilog • gate primitives
- Example: not n1(sel_n, sel); and a1(sel_b, b, sel_b); and a2(sel_a, a, sel); o1(out, sel_b, sel_a); or

GATE PRIMITIVES & GATE DELAY /19ECB302-VLSI DESIGN/M.Pradeepa /AP/ECE/SNSCT OPERATORS AND TIMING

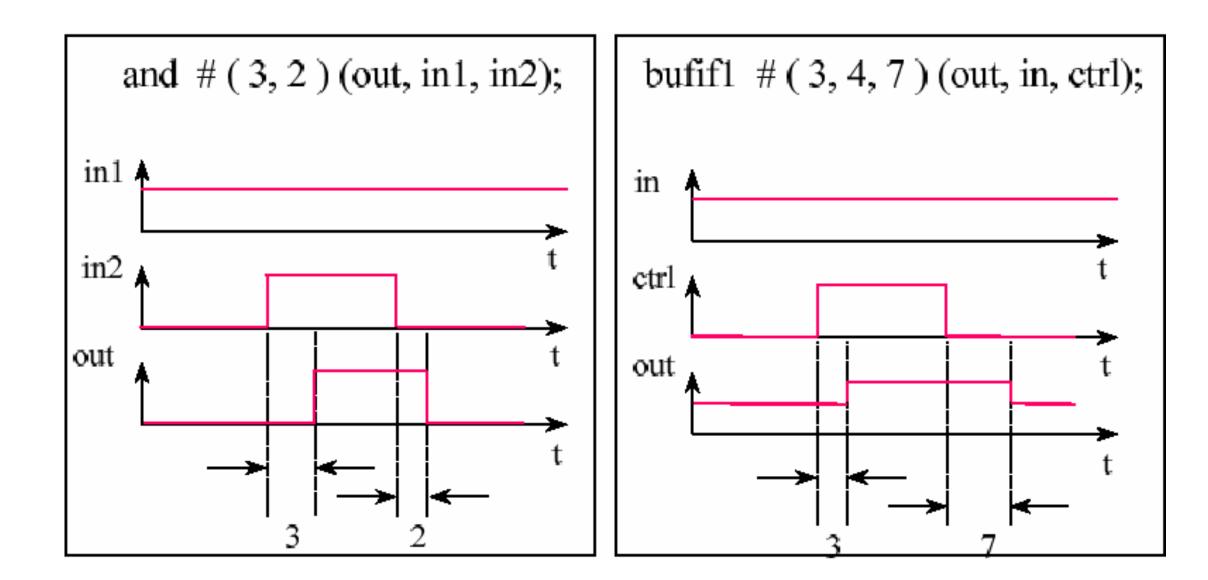
10/30/2023



11/21

DELAY SPECIFICATION IN PRIMITIVES

• Delay specification defines the propagation delay of that primitive gate.


not #10 u0(out, in);

DELAY SPECIFICATION IN PRIMITIVES

• Support (rise, fall, turn-off) delay specification.

DELAY AND TIME SCALES

Gate Description buf #<delay> buf0(X,A); where <delay> is: <delay time> or (<minimum delay>:<typical delay>:<maximum delay>)

example: buf #(3:4:5) buf0(X,A); or #1 u0(out, in0, in1); **Modeling Separate Rise and Fall Delays**

not #<delay> not0(X,A);

where <delay> is

(<rise dealy>,<fall delay>)

not #(2.23:2.33:2.66,3.33:3.47:3.9) not0(X,A); *example*:

DELAY AND TIME SCALES...

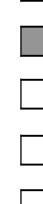
- Three-state drivers: include rise, fall, and **turn off** delays *example*: bufif1 #(2.2:2.3:2.6, 3.3:3.4:3.9, 0.2:0.2:0.2) u0(out, in);
- Timescales
- The `timescale compiler directive can be used to specify delays in time units.
- Syntax of the `timescale compiler directive: `timescale <unit>/<precision>

`timescale 1ns/10ps

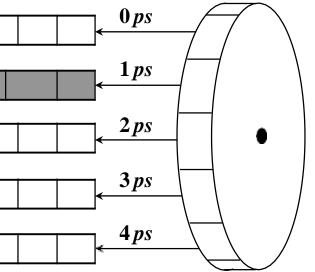
example: then the design will be simulated in units of 10 ps.

not #(2.337,3.472) not1(X, A); 2.337ns will be scaled to 2.34 ten pico-second example: units for simulation purposes.

GATE PRIMITIVES & GATE DELAY /19ECB302-VLSI DESIGN/M.Pradeepa /AP/ECE/SNSCT


explicit

DELAY AND TIME SCALES...


• The smallest precision of all the 'timescale determines the time unit of simulation.

`timescale 1ns/10ps module m1(...); ... `timescale 100ns/1ns module m2(...); ... `timescale 1ps/1ps module m3(...); ...

USER DEFINED PRIMITIVES & UDP TABLE SYMBOLS

- UDPs permitthe user to augment the set of pre- defined primitive elements.
- UDPs • Use of reduce the amount may required for simulation.
- Both level-sensitive and edge-sensitive supported.

symbol	Interpretation	Comme
0 1 x ? b - (vw) * r f p n	Logic 0 Logic 1 Unknown Iteration of 0, 1, and x Iteration of 0 and 1 No change Change of value from v to w Same as (??) Same as (01) Same as (10) Iteration of (01), (0x), and (x1) Iteration of (10), (1x), and (x0)	input field input Any value change edge on input Pos including x

of memory

behavior is

ents

field output field

e on input Rising edge on input Falling ositive edge including x Negative edge

USER DEFINED PRIMITIVES (UDP) DEFINITION

• Pure combinational Logic

primitive mux(o,a,b,s); output o; input a,b,s;

table

// a b s : o 0?1:0; 1?1:1; ? 0 0 : 0; ? 1 0 : 1; 0 0 x : 0;1 1 x : 1; endtable endprimitive

- The output port must be the first port.
- UDP definitions occur outside of a module
- •All UDP ports must be declared as scalar inputs or outputs. UDP ports cannot be inout.
- •Tablee columns are inputs in order declared
- in primitive statement-colon, output, followed by a semicolon.
- •Any combination of inputs which is not specified in the table will produce an 'x' at the output.

USER DEFINED PRIMITIVES (UDP) DEFINITION...

• Level-sensitive Sequential Behavior

primitive latch(q,clock,data); output q; reg q; input clock,data;

						•The '?' i
	table // clock data : state_output : next_state			outnut	condition	
			_	-	—	■The '-' i
0	0	•	? ?	:	0;	change'
1	?	:	?	:	-;	change'.
endtal	ble					

endprimitive

GATE PRIMITIVES & GATE DELAY /19ECB302-VLSI DESIGN/M.Pradeepa /AP/ECE/SNSCT

is used to represent don't care n in either inputs or current state. in the output field indicates 'no

ASSESSMENT

1.How the time scale is used? 2."#2" indicates ------3.Draw the waveform configuration of following code `timescale 1ns/100ps **module** HalfAdder (A, B, Sum, Carry); input A, B; output Sum, Carry; assign #3 Sum = A ^ B; assign #6 Carry = A & B; Endmodule

4.In UDP, The '?' is used to represent -----condition in either ----- or ----- state.

SUMMARY & THANK YOU

