
 

SNS COLLEGE OF TECHNOLOGY 

(An Autonomous Institution) 

Coimbatore – 35. 

 

DEPARTMENT OF BIOMEDICAL ENGINEERING 
 

 

UNIT 4 

BACKPROPAGATION NEURAL NETWORK 

To illustrate some problems that often arise when we are attempting to automate complex 

pattern-recognition applications, let us consider the design of a computer program that must 

translate a 5  7 matrix of binary numbers representing the bit-mapped pixel image of an 

alphanumeric character to its equivalent eight-bit ASCII code.  This basic problem, pictured 

in figure, appears to be relatively trivial at first glance.  Since there is no obvious 

mathematical function that will perform the desired translation, and because it would 

undoubtedly take too much time (both human and computer time) to perform a pixel-by-pixel 

correlation, the best algorithmic solution would be to use a lookup table. 

 The lookup table needed to solve this problem would be a one-dimensional linear 

array of ordered pairs, each taking the form. 

 

Figure: The general back propagation network architecture is shown. 

 



 

 The first is the numeric equivalent of the bit-pattern code, which we generate by 

moving the seven rows of the matrix to a single row and considering the result to be a 35-bit 

binary number.  The second is the ASCII code associated with the character.  The array 

would contain exactly the same number of ordered pairs as there were characters to convert.  

The algorithm needed to perform the conversion process would take the following form: 

 

 function TRANSLATE (INPUT : long integer; 

       LUT: AELEMENT [ ]) return ascii; 

 (performs pixel-matrix to ASCII character conversion) 

 var TABLE : AELEMENT [ ]; 

       found : Boolean; 

               i : integer; 

 begin 

     TABLE = LUT       {locate translation table} 

      found = false; {translation not found yet} 

 

      for i = 1 to length (TABLE) do {for all items in table} 

  if TABLE [i]. pattern = INPUT 

  then Found = True; Exit; 

     {translation found, quit loop} 



    End; 

 

 If Found 

 Then return TABLE [i]. ascii {return ascii} 

 Else return 0 

      end; 

 Although the look up –table approach is reasonably fast and easy to maintain, there 

are many situations that occur in real systems that cannot be handled by this method.  For 

example, consider the same pixel-image-to-ASCII conversion process in a more realistic 

environment.  Let’s suppose that our character image scanner alters a random pixel in the 

input image matrix due to noise when the image was read.  This single pixel error would 

cause the look up algorithm to return either a null or the wrong ASCII code, since the match 

between the input pattern and the target pattern must be exact. 

 Now consider the amount or additional software (and, hence, CPU time) that must be 

added to the lookup-table algorithm to improve the ability of the computer to “guess” at 

which character the noisy image should have been.  Single-bit errors are fairly easy to find 

and correct.  Multibit errors become increasingly difficult as the number of bit errors grows.  

To complicate matters even further, how could our software compensate for noise on the 

image if that noise happened to make an “O” look like a “Q” or an “E” look like an “F”?  If 

our character-conversion system had to produce an accurate output all the time, an inordinate 

amount of CPU time would be spent eliminating noise from the input pattern prior to 

attempting to translate it to ASCII. 

One solution to this dilemma is to take advantage of the parallel nature of neural networks to 

reduce the time required by a sequential processor to perform the mapping.  In addition, 

system-development time can be reduced because the network can learn the proper algorithm 

without having someone deduce that algorithm in advance. 

BPN Operation 

In section, we will cover the details of the mechanics of back propagation.  A summary 

description of the network operation is appropriate here, to illustrate how the BPN can be 

used to solve complex pattern-matching problems.  To begin with, the network learns a 

predefined set of input-output example pairs by using a two-phase propagate-adapt cycle.  

After an input pattern has been applied as a stimulus to the first layer of network units.  It is 

propagated through each upper layer until an output is generated.  This output pattern is then 

compared to the desired output, and an error signal is computed for each output unit. 



The error signals are then transmitted backward from the output layer to each node in the 

intermediate layer that contributes directly to the output.  However, each unit in the 

intermediate layer receives only a potion of the total error signal, based roughly on the 

relative contribution the unit made to the original output.  This process repeats, layer by layer, 

until each mode in the network has received an error signal that describes its relative 

contribution to the total error.  Based on the error signal received, connection weights are 

then updated by each unit to cause the network to converge toward a state that allows all the 

training patterns to be encoded. 

The significance of this process is that, as the network trains, the nodes in the intermediate 

layers organize themselves such that difference nodes learn to recognize different feature of 

the total input space.  After training, when present with an arbitrary input pattern that is noisy 

or incomplete, the units in the hidden layers of the network will respond with an active output 

if the new input contains a pattern that resembles the feature the individual units learned to 

recognize during training.  Conversely, hidden-layer units have a tendency to inhibit their 

outputs if the input pattern does not contain the feature that they were trained to recognize. 

As the signals propagate through the different layers in the network, the activity pattern 

present at each upper layer can be thought of as a pattern with features that can be recognized 

by units in the subsequent layer.  The output pattern generated can be thought of as a feature 

map that provides an indication of the presence or absence of many different feature 

combinations at the input.  The total effect of this behaviour is that of BPN provides an 

effective means of allowing a computer system to examine data patterns that may be 

incomplete or noisy, and to recognize subtle patterns from the partial input. 

Several researchers has shown that during training, BPNs tend to develop internal 

relationships between nodes so as to organize the training data into classes of patterns .This 

tendency can be extrapolated to the hypothesis that all hidden-layer units in the BPN are 

some how associated with specific features of the input pattern as a result of training.  

Exactly what the association is may or may not be evident to the human observer.  What is 

the important is that the network has found an internal representation that enables is to 

generate the desired outputs when given the training inputs.  This same internal 

representation can be applied to inputs that were not used during training.  The BPN will 

classify these previously unseen inputs according to the features they share with the training 

examples. 

 


