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Algorithm:
Step 0. Initialize weights and bias.
(For simplicity, set weights and bias to zero.) Set learning rate.
Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each training pair s:t, do Steps 3-5.
Step 3. Set activations of input units:
Xi=Si
Step 4. Compute response of output unit

vin = b+ > xiw;;
1

1 if y_in > 90
y = 0 if —0=y_in=260
—1 ify_in< —@

Step 5. Update weights and bias if an error occurred for this pattern.
y#t
wi (new) = wi(old)+ atx;
b(new)=b(old)+ at
else
wi (new) = wi(old)
b(new)=b(old)
Step 6. Test stopping condition.
If no weights changed in Step 2, stop; else, continue.
Example
A Perceptron for the AND function: bipolar inputs and targets
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Let us consider again the Ao function with binary input and bipolar target, now
using the perceptron learning rule. The training data are as given in Example 2.6 for
the Hebb rule. An adjustable bias is included, since it is necessary if a single-layer
net is to be able to solve this problem. For simplicity, we take a = 1 and set the
initial weights and bias to 0, as indicated. However, to illustrate the role of the
threshold, we take@ =

The weight change is Aw = 1(x,, xy, 1) if an error has occurred and zero
otherwise. Presenting the first input, we have:

WEIGHT
INPUT v NET OUT TARGET  CHANGES WEIGHTS
r x ) (Wi wy b)
‘ | © 0 0
1 10 0 0 l a1rna 1
The separating lines become fj

Htn+l=2

and

Nton+tl=-2
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\ Figure 2.15 Decision boundary for logic
N function AND after first training input.

The graph in Figure 2.15 shows that the response of the net will now be correct for
the first input pattern.
Presenting the second input yields the following:

WEIGHT
INPUT NET OUT  TARGET CHANGES WEIGHTS
(xy x2 1) (wi wx b)
(1 1
a o 2 1 -1 (-1 0 -1 O @O 0o

The separating lines become

X, = .2
and

x; = —=.2

The graph in Figure 2.16 shows that the response of the net will now (still) be correct
for the first input point.
For the third input, we have:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x» 1 (wy  wp b)
- 0 1 0)
(0 1 1) 1 1 -1 ow -1 -1 (0 0 -1

Since the components of the input patterns are nonnegative and the components of
the weight vector are nonpositive, the response of the net will be negative (or zero).
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Figure 2.16 Decision boundary after
second training input.

To complete the first epoch of training, we present the fourth training pattern:

WEIGHT
INPUT NET OUT TARGET  CHANGES WEIGHTS
(xl X2 l) (W] Wa b)
o o0 -1
© 0 n -1 -1 -1 © o=ty o o -1

The response for all of the input patterns is negative for the weights derived; but
since the response for input pattern (1, 1) is not correct, we are not finished.



Finally, the resuits for ‘:;1; tenth epoch ar{:a:

Y

(1 I 1) 1 | 1
a o n -2 -1 -1
0 1 1 -1 -1 -1
© ¢ 1 -4 -1 -1

Thus, the positive response is given by all points such that

2x; + 3{2-— 4> .2,
with boundary line '

R
X2 = a,xl 50

and the negative response is given by all points such that

le + 3x-_p -4 < k.z.,
with boundary line

(see Figure 2.19.)
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Figure 2.19 Final decision boundaries
for Anp function in perceptron learning.
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