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PROBABILISTIC PCA
The Probability Model
The use of the isotropic Gaussian noise model N (0. #%I) for € in conjunction with equation (1)
implies that the x-conditional probability distribution over t-space is given by
tx~ N(Wx+ .00, (2)
With the marginal distribution over the latent variables also Gaussian and conventionally defined

by x ~ N (0.1), the marginal distribution for the observed data t is readily obtained by integrating
out the latent variables and is likewise Gaussian:

t~ N (. Q). (3)

where the observation covariance model is specified by C = WW" + ¢°I. The corresponding log-
likelihood is then

L= —?N{d]n[ZTr)—l-ln C +tr(C'S)}. (4)
where
1N .
S= Nngl(tn_au)(tn_au)]- (5)

The maximume-likelihood estimator for g is given by the mean of the data, in which case S is the
sample covariance matrix of the observations {t,}. Estimates for W and 0% may be obtained by
iterative maximisation of L, for example using the EM algorithm given in Appendix B, which
is based on the algorithm for standard factor analysis of Rubin and Thayer (1982). However, in
contrast to factor analysis, M.L.E.s for W and % may be obtained explicitly, as we see shortly.

Later, we will make use of the conditional distribution of the latent variables x given the observed
t, which may be calculated using Bayes™ rule and is again Gaussian:

Xt~ NM "W'(t— p).0?M 1), (6)

where we have defined M = W'W + o?1. Note that M is of size ¢ x g while C is d x d.



Properties of the Maximum-Likelihood Estimators

In Appendix A it is shown that, with C given by WW" + ¢2L, the likelihood (4) is maximised
when:

W = Ug(Aq — o?DV/?R, (7)
where the g column vectors in the d x g matrix Ug are the principal eigenvectors of S, with cor-
responding eigenvalues A;.. ... Aq in the ¢ x ¢ diagonal matrix Ag, and R is an arbitrary g x g or-

thogonal rotation matrix. Other combinations of eigenvectors (i.e. non-principal ones) correspond
to saddle-points of the likelihood function. Thus, from (7), the latent variable model defined by
equation (1) effects a mapping from the latent space into the principal subspace of the observed
data.

[t may also be shown that for W = Wy, the maximum-likelihood estimator for alis given by
1 i
- Aj. (8)
_ J:
d q J:q 1

which has a clear interpretation as the variance ‘lost’ in the projection, averaged over the lost
dimensions.
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In practice, to find the most likely model given S, we would first estimate ¢%; from (8), and then
Wy from (7), where for simplicity we would effectively ignore R (i.e. choose R = I). Alterna-
tively, we might employ the EM algorithm detailed in Appendix B, where R at convergence can
be considered arbitrary.

Factor Analysis Revisited

Although the above estimators result from application of a simple constraint to the standard fac-
tor analysis model, we note that an important distinction resulting from the use of the isotropic
noise covariance oI is that PPCA is covariant under rotation of the original data axes, as is stan-
dard PCA, while factor analysis is covariant under component-wise rescaling. Another point of
contrast is that in factor analysis, neither of the factors found by a two-factor model is necessar-
ily the same as that found by a single-factor model. In probabilistic PCA, we see above that the
principal axes may be found incrementally.

Dimensionality Reduction

The general motivation for PCA is to transform the data into some reduced-dimensionality repre-
sentation, and with some minor algebraic manipulation of Wy, we may indeed obtain the stan-
dard projection onto the principal axes if desired. However, it is more natural from a probabilistic
perspective to consider the dimensionality-reduction process in terms of the distribution of the
latent variables, conditioned on the observation. From (6), this distribution may be conveniently
summarised by its mean:

(Xn|ta) = M "War " (t, — po). 9)

(Note, also from (6), that the corresponding conditional covariance is given by oZ; M ! and is
thus independent of n.) It can be seen that when o2 — 0, M ! — (Wy."War) ! and (9) then rep-
resents an orthogonal projection into latent space and so standard PCA is recovered. However,
the density model then becomes singular, and thus undefined. In practice, with o2 > 0 as deter-
mined by (8), the latent projection becomes skewed towards the origin as a result of the Gaussian
marginal distribution for x. Because of this, the reconstruction Wy (X, t,) + g is not an orthog-
onal projection of t,, and is therefore not optimal (in the squared reconstruction-error sense).
Nevertheless, optimal reconstruction of the observed data from the conditional latent mean may
still be obtained, in the case of ¢? > 0, and is given by Wy (Wyg "Wa) 'M{x,ts) + p.
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