1

Reg

g.No:				

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University) Coimbatore - 641 035.

Internal Assessment-I AcademicYear2023-2024(Odd)

First Semester 23MAT101-MATRICES AND CALCULUS (REGULATION 2023) (Common to all branches)

MaximumMarks:50

PART - A(5 x 2 = 10 MARKS)						
		ANSWERALLQUESTIONS				
CO						
1.	CO1	(Rem)				
2.	Find t	the Eigen value of $adj(A)$ if $A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	CO1	(Und)		
3.	If 3 and 15 are two eigen values of $A = \begin{bmatrix} 8 & -6 & 2 \\ 6 & 7 & 4 \end{bmatrix}$ find A without expanding the			(Rem)		
4.	4. Infer the matrix form of the quadratic form of $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$		CO2	(Rem)		
5. Discuss the rank, index, signature, and nature of $y_1^2 + 3y_2^2 - 4y_3^2$ CO2			CO2	(Und)		
		PART – B (13+13+14= 40 MARKS) ANSWERALLQUESTIONS				
6.	a)i)	Interpret the Eigen value and Eigen vector of $A = \begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$	CO1	(App) (10)		
	ii)	List out the applications of Eigen value in real life.	CO1	(App) (3)		
	(or)					
	b)	Test whether the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$ satisfies its own characteristics equation and also compute its A^4 and A^{-1} .	CO1	(App) (13)		

Time:1.30Hours

7.	a)	Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by means of orthogonal transformation.	CO1	(App) (13)
		(or)		
	b)	Obtain an orthogonal transformation which will transform the quadratic form $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$ into sum of squares.	CO2	(App) (13)
8.	a)	What is the number of femalesin each class after 2, 4, and 6 years if each class initially consists of 400 females each. Let the Leslie matrix be $\begin{bmatrix} 0 & 2.3 & 0.4 \\ 0.6 & 0 & 0 \\ 0 & 0.3 & 0 \end{bmatrix}$ and	CO1	(Ana) (14)
		find its distribution vector and its rate of change.		
		(or)		
	b)	Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 4x_2x_3 - 2x_1x_3$ to canonical form by orthogonal reduction. Determine its nature, rank, signature, index and find a set of non-zero value for $x_{1,} x_{2,} x_3$ for which the above quadratic form is zero.	CO2	(App) (14)

Rem/Und:Remember/UnderstandApp:ApplyAna: AnalyzeEva:EvaluateCre:Create
