DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

Solution of two dimensional Wheat flow Equation
The two dimensional heat plow equation is

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

The possible solutions of two dimensional heat equation is
(i) $u(x, y)=\left(A e^{p x}+B e^{-p x}\right)(C \cos p y+D \sin p y)$
(ii) $u(x, y)=(A \cos p x+B \sin p x)\left(C e^{p y}+D e^{-p y}\right)$
(iii) $u(x, y)=(A x+B)(C y+D)$

The suitable soln. is TYPE-T Heat flows in x direction (W) $0<n$ al

$$
u(x, y)=(A \cos p x+B \sin p x)\left(c e^{p y}+D e^{-p y}\right)
$$

The boundary colts: are:
i) $u(0, y)=0$.
ii) $u(l, y)=0$
iii) $u(x, 0)=0$
iv) $u(x, l)=f(x) \quad 0<x<l$.

1 A square plate is bold. by the lines $x=0, y=0$, $x=20$ and $y=20$. Its faces are insulated. The temp. along the upper horizontal edge is gh. by $a(x, 20)=x(20-x)$ when $0<x<20$ while the other thrice edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temp. in the plate.

Coimbatore - 35
DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

SOl:
Let $u(x, y)$ be the temp. at any point (x, y).
Then $u(x, y)$ Satisfies the Laplace's eqn.

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}=0
$$

The boundary colts. are:
(i) $u(0, y)=0$
(ii) $u(20, y)=0$
(iii) $u(x, 0)=0$
(iv) $u(x, 20)=x(20-x), 0<x<20$

The suitable sols. is

$$
\begin{align*}
& u(a, y)=\left(A e^{p x}+B e^{-p x}\right)(C \\
& u(x, y)=(A \cos P x+B \sin p x)\left(C e^{p y}+D e^{-P y}\right) \tag{i}
\end{align*}
$$

Apply (i) in

$$
\begin{align*}
u(0, y) & =A\left(C e^{P y}+D e^{-P y}\right) \\
0 & =A\left(C e^{p y}+D e^{-P y}\right) \Rightarrow A=0 \\
\therefore u(x, y)= & B \sin p x\left(C e^{P y}+D e^{-p y}\right) \tag{2}
\end{align*}
$$

Apply (ii) in (2)

$$
\begin{align*}
& u(20, y)= B \sin 20 p\left(c e^{p y}+D e^{-p y}\right) \\
& 0= B \sin 20 p\left(c e^{p y}+D e^{-p y}\right) \\
& \Rightarrow B \neq 0, \sin 20 p=0 \\
& \sin 20 p=\sin n \pi \\
& p=\frac{n \pi}{20}
\end{align*}
$$

Apply (iii) in (3)

$$
\begin{aligned}
& u(x, 0)=B \sin \frac{n \pi}{20} x(C+D) \\
& 0=B \sin \frac{n \pi}{20} x(C+D) \\
& \Rightarrow C+D=0 \\
& \Rightarrow D=-C \\
& \therefore u(x, y)=B \sin \frac{n \pi}{20} x\left(c e^{\frac{n \pi}{20} y}-c e^{-\frac{n \pi}{20} y}\right) \\
&=B C \sin \frac{n \pi}{20} x\left(e^{\frac{n \pi}{20} y}-e^{-\frac{n \pi}{20} y}\right) \\
&= B C \sin \frac{n \pi}{20} x\left(2 \sinh \frac{n \pi y}{20}\right) \\
& u(x, y)=2 B C \sin \frac{n \pi}{20} x \sinh \frac{n \pi y}{20} y
\end{aligned}
$$

SN COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

\therefore The epeneral sols is

$$
u(x, y)=\pi / \sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{20} x \sin \frac{h n \pi y}{20}
$$

Apply (iv) in (4)

$$
u(x, 20)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{20} x \sin \frac{h n \pi}{20} \cdot 20
$$

$$
=\sum_{n=1}^{\infty} A_{n} \sin h n \pi \sin \frac{n \pi x}{20}
$$

$x(20-x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{20}$ where $B_{n}=A_{n} \sin h_{n} \pi$

$$
\begin{aligned}
B_{n}= & \frac{2}{20} \int_{0}^{20} x(20-x) \sin \frac{n \pi x}{20} d x \\
= & \frac{1}{10} \int_{0}^{20}\left(20 x-x^{2}\right) \sin \frac{n \pi x}{20} d x . \\
= & \frac{1}{10}\left[20 x\left(-\cos \frac{n \pi x}{20}\right) \cdot \frac{20}{n \pi}-20\left(-\sin \frac{n \pi x}{20}\right)\left(\frac{20}{n \pi}\right)^{2}\right]_{0}^{2} \\
- & \frac{1}{10}\left[x^{2}\left(-\cos \frac{n \pi}{20} x\right) \cdot \frac{20}{n \pi}-2 x\left(-\sin \frac{n \pi x}{20}\right)\left(\frac{20}{n \pi}\right)^{2}\right. \\
& \quad+2\left(\frac{\left.\left.\cos \frac{n \pi}{20} x\right)\left(\frac{20}{n \pi}\right)^{3}\right]_{0}^{20}}{}\right.
\end{aligned}
$$

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Coimbatore - 35

DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

$$
\begin{aligned}
& =\frac{1}{10}\left[-400(-1)^{n} \frac{20}{n \pi}+0\right]-\frac{1}{10}\left[-400(-1)^{n} \cdot \frac{20}{n \pi}+2(-1)^{n}\left(\frac{2}{n \pi}\right.\right. \\
& \left.-2\left(\frac{20}{n \pi}\right)^{3}\right] \\
& =\frac{1}{10}\left[-400(-1)^{n} \frac{20}{n \pi}+400(-1)^{n} \frac{20}{n \pi}-2(-1)^{n} \frac{(20)^{3}}{(n \pi)^{3}}+2\left(\frac{20}{n \pi}\right)^{3}\right. \\
& =\frac{1}{5}\left[1-(-1)^{n}\right]\left(\frac{20}{n \pi}\right)^{3} \\
A_{n} & =\frac{B_{n}}{\sin h n \pi}=\frac{1}{5} \cdot \frac{\left[1-(-1)^{n}\right]}{\sinh n \pi}\left(\frac{20}{n \pi}\right) 3 \\
u(x, y) & =\sum_{n=1}^{\infty} \frac{160}{\infty} \cdot\left[1-(-1)^{n}\right] \cdot \frac{160}{\sin h n \pi} \cdot \frac{\sin ^{3} \pi^{3}}{n^{3}} \cdot \sinh \frac{n \pi y}{20} \sin \frac{n \pi x}{20} \\
& =\sum_{n=1}^{\infty} \frac{1600}{n^{3} \pi^{3}} \cdot \frac{\left[1-(-1)^{n}\right]}{\sinh n \pi} \cdot \sin \frac{h n \pi y}{20} \cdot \sin \frac{n \pi x}{20}
\end{aligned}
$$

