

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

TYPE-D VIBRATING STRING WITH NON-ZERD IN MAL VELOCITY. The initial and boundary colors of you, t) are: (i) y(0, 1)=0 (ii) y(1,E) = 0(iii) y (x, 0)= 0 (iv) $\frac{\partial y}{\partial F}(x, 0) = -\frac{1}{2}(x)$ of a string of length '1' is petially at sent in its con a constitution position and each of its pla is go, a velocity 'V' such that. V = SCN, exa < 1/2 Find the displacement ((1.a), 1/2 < 21 < 1. of y (x, t) at any time 't'. Boln: The boundary colors are (+) y (0, E) = 0, E≥0 (ii) y(1, E)= 0 (ii) y(x, 0) = 0 (x, 0) = 0 (x, 0) = 1 (x, 0) = 1y (a,t) = (A cospa+ B simpa) (c cospat+ D sim pat) - () The suitable egn is

19MAT201/Transforms & Partial Differential Equations

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

Apply (i) & (b),

$$y(o, t) = A (c \cos pat + D \sin pat)$$

 $0 = A (c G a pat + D \sin pat)$
 $\Rightarrow A = 0$ Auch $A = 0$ in (D), $y(n, t) = B \sin px [C \cos pat + D \sin pat]$
 $\Rightarrow A = 0$ Auch $A = 0$ in (D), $y(n, t) = B \sin px [C \cos pat + D \sin pat]$
 $y(d, t) = B \sin pd [C \cos pat + D \sin pat]$
 $0 = B \sin pd [C \cos pat + D \sin pat]$
 $B \pm 0$ Simpl = 0
 $p = \frac{\pi i}{L}$
Sub th (D), $y(x, t) = B \sin n\pi x [C \cos n\pi at + D \sin n\pi i at] = (D)$
Apply (ini) in (D).
 $y(n, o) = B \sin n\pi x [C]$
 $0 = Bc \sin n\pi i x [C]$
 $0 = Bc \sin n\pi i x .$
 $B \pm 0, c = 0$
Sub $c = 0$ in (D)
 $y(x, t) = (B \sin n\pi i x) (D \sin n\pi at) = (D)$
 $y(x, t) = \sum_{n=1}^{\infty} B_n x in \pi i x \sin n\pi at = (D)$



Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATION

Apply (IN) in (D) $\frac{\partial Y}{\partial t}(s,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{2} \cos \frac{m\pi}{2} at \left(\frac{n\pi}{2}a\right)$ $\frac{\partial y}{\partial t}(x, \sigma) = \sum_{n=1}^{\infty} B_n \sin \frac{\pi n}{\sigma} x \left(\frac{n\pi}{\sigma} a\right)$ Bo= 2 J gear sen milada. Where Co= (nil a) Bo $=\frac{2}{2}\left[\int_{0}^{\sqrt{2}} c_{x} s_{n}^{x} n \overline{n} \overline{n} z dx + \int_{0}^{1} c(l-z) s_{n}^{x} n \overline{n} \overline{n} z dx\right] = \frac{4cl}{n^{2}n^{2}} s_{n}^{x} dx$ $\frac{4cl}{\sqrt{2}} B_{n} = \frac{\sqrt{l}}{n^{2}n} \frac{4cl}{\sqrt{n}n} s_{n}^{x} dx$ $B_{n} = \frac{2C}{n\pi a} \left(\frac{2 \sin n\pi a}{(n\pi i/a)} \right) = \frac{4l^{2}c}{n^{3}\pi^{3}a} \left(\frac{\sin n\pi a}{1} \right)^{\alpha}$ $B_{n} = \frac{2C}{n\pi a} \left(\frac{2 \sin n\pi a}{(n\pi i/a)} \right) = \frac{4l^{2}c}{n^{3}\pi^{3}a} \left(\frac{\sin n\pi a}{1} \right)^{\alpha}$ $B_{n} = \frac{2C}{n\pi a} \left(\frac{4l^{2}c}{n^{3}\pi^{3}a} - \frac{\sin n\pi a}{1} \right) = \frac{4l^{2}c}{n^{3}\pi^{3}a} \left(\frac{\sin n\pi a}{1} \right)^{\alpha}$

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-IV & PPLICATION OF PARTIAL DIFFERENTIAL EQUATION

Twibnating sking with non zero velocity]
By a shing of length 1 is initially at rest in equilibrium
persition & each pt of it is generated by
$$\left(\frac{2iy}{2t}\right) = \frac{y}{2} \sin^{2} \pi \frac{y}{2}$$

Qetermine the bangenerie displacement y to t .)
Solution $\frac{2}{2}$ Applying (D. ADS (Bi)) boundary cellon. we expt
 $\frac{2i}{2}$ Applying (D. ADS (Bi)) boundary cellon. we expt
 $\frac{2i}{2}$ (x_{i} , t) = $\frac{2}{2}$ Bin $\sin^{2} \pi x$ sin $\pi \pi x$
 $\frac{2i}{2}$ (x_{i} , t) = $\frac{2}{2}$ Bin $\sin^{2} \pi x$ sin $\pi \pi x$
 $\frac{2i}{2}$ (x_{i} , t) = $\frac{2}{2}$ Bin $\sin^{2} \pi x$ sin $\pi \pi x$
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\sin^{2} \pi x$ sin $\pi \pi x$
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi \pi x}{1}$. $\frac{\pi \pi x}{1}$
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi \pi x}{1}$.
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi \pi x}{1}$.
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi \pi x}{1}$.
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi \pi x}{1}$.
 $\sqrt{2} \sin^{2} \pi x$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi x}{1}$.
 $\sqrt{2} \sin^{2} \pi x$ sin $\frac{\pi \pi x}{1}$ = $\frac{2}{2}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi x}{1}$.
 $\frac{\pi \pi x}{1}$ = $\frac{2}{3}$ Bin $\frac{\pi \pi x}{1}$ sin $\frac{\pi x}{1}$.
 $B_{2} = 0$.
 $B_{2} = \frac{2\pi \pi x}{1}$ = $-\frac{\sqrt{2}}{4}$ \Rightarrow $B_{3} = -\frac{\sqrt{2}}{4}$
 $B_{3} = -\frac{\sqrt{2}}{4}$ \Rightarrow $B_{3} = -\frac{\sqrt{2}}{4}$
 $B_{4} = 0$
 a_{1} $B_{n} = 0$ for $n \neq 1, 3$.
 $\frac{1}{2}$ (m, t) = $\frac{3}{4}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{12}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{12}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{12}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{12}$ $\frac{\sqrt{2}}{1$