SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)
Approved by AICTE \& Affiliated to Anna University
Accredited by NBA \& Accrediated by NAAC with 'A+' Grade,
Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

Course Name: Control Systems
III Year : V Semester
Unit II -Time Response Analysis
Topic: Root Locus

Rules for Construction of Root Locus

Rule 1 - Locate the open loop poles and zeros in the 's' plane
Rule 2 - Find the number of root locus branches.

- The root locus branches start at the open loop poles and end at open loop zeros. So, the number of root locus branches N is equal to the number of finite open loop poles P or the number of finite open loop zeros Z, whichever is greater
- Mathematically, we can write the number of root locus branches N as

$$
\begin{aligned}
& N=P \text { if } P \geq Z \\
& N=Z \text { if } P<Z
\end{aligned}
$$

Rules for Construction of Root Locus

Rule 3 - Identify and draw the real axis root locus branches.

- If the angle of the open loop transfer function at a point is an odd multiple of 180°, then that point is on the root locus.
- If odd number of the open loop poles and zeros exist to the left side of a point on the real axis, then that point is on the root locus branch.
- Therefore, the branch of points which satisfies this condition is the real axis of the root locus branch.

Rules for Construction of Root Locus

19BMT301/CS/Dr.R.Karthick/HoD/BME

Rules for Construction of Root Locus

Rule 4 - Find the centroid and the angle of asymptotes

- If $\mathrm{P}=\mathrm{Z}$, then all the root locus branches start at finite open loop poles and end at finite open loop zeros.
- If $\mathrm{P}>\mathrm{Z}$, then Z number of root locus branches start at finite open loop poles and end at finite open loop zeros and $\mathrm{P}-\mathrm{Z}$ number of root locus branches start at finite open loop poles and end at infinite open loop zeros.
- If $\mathrm{P}<\mathrm{Z}$, then P number of root locus branches start at finite open loop poles and end at finite open loop zeros and $\mathrm{Z}-\mathrm{P}$ number of root locus branches start at infinite open loop poles and end at finite open loop zeros.

> Centroid = Sum of poles - Sum of zeros $/(\mathrm{n}-\mathrm{m})$
> The angle of asymptotes $=\mathbf{1 8 0}(2 \mathrm{q} \pm 1) /(\mathrm{n}-\mathrm{m})$

19BMT301/CS/Dr.R.Karthick/HoD/BME

Rules for Construction of Root Locus

Rules for Construction of Root Locus

Rule 5 - Find Break-away and Break-in points.

- If there exists a real axis root locus branch between two open loop poles, then there will be a break-away point in between these two open loop poles.
- If there exists a real axis root locus branch between two open loop zeros, then there will be a break-in point in between these two open loop zeros
- Write K in terms of s from the characteristic equation $1+G(s) H(s)=0$.
- Differentiate K with respect to s and make it equal to zero. Substitute these values of s in the above equation.
- The values of s for which the K value is positive are the break points.

Rules for Construction of Root Locus

Rule 6 - Find the angle of departure and the angle of arrival.

- The Angle of departure and the angle of arrival can be calculated at complex conjugate open loop poles and complex conjugate open loop zeros respectively

Rule 7 - Intersection point on imaginary axis

- Substitute $s=j \omega$ in the characteristic equation and equate real part and imaginary part to zero separately

Rules for Construction of Root Locus

